Interferometry of Atomic Matter Waves in the Cold Atom Lab onboard the International Space Station (2402.14685v1)
Abstract: Ultracold atomic gases hold unique promise for space science by capitalizing on quantum advantages and extended freefall, afforded in a microgravity environment, to enable next-generation precision sensors. Atom interferometers are a class of quantum sensors which can use freely falling gases of atoms cooled to sub-photon-recoil temperatures to provide unprecedented sensitivities to accelerations, rotations, and gravitational forces, and are currently being developed for space-based applications in gravitational, earth, and planetary sciences, as well as to search for subtle forces that could signify physics beyond General Relativity and the Standard Model. NASA's Cold Atom Lab (CAL) operates onboard the International Space Station as a multi-user facility for studies of ultracold atoms and to mature quantum technologies, including atom interferometry, in persistent microgravity. In this paper, we report on path-finding experiments utilizing ultracold ${87}$Rb atoms in the CAL atom interferometer, which was enabled by an on-orbit upgrade of the CAL science module: A three-pulse Mach-Zehnder interferometer was studied to understand limitations from the influence of ISS vibrations. Additionally, Ramsey shear-wave interferometry was used to manifest interference patterns in a single run that were observable for over 150 ms free-expansion time. Finally, the CAL atom interferometer was used to remotely measure the photon recoil from the atom interferometer laser as a demonstration of the first quantum sensor using matter-wave interferometry in space.
- E. R. Elliott, M. C. Krutzik, J. R. Williams, R. J. Thompson, and D. C. Aveline, “NASA’s Cold Atom Lab (CAL): system development and ground test status,” npj Microgravity 4(1), 16 (2018). URL https://doi.org/10.1038/s41526-018-0049-9.
- D. C. Aveline, J. R. Williams, E. R. Elliott, C. Dutenhoffer, J. R. Kellogg, J. M. Kohel, N. E. Lay, K. Oudrhiri, R. F. Shotwell, N. Yu, and R. J. Thompson, “Observation of Bose-Einstein condensates in an Earth-orbiting research lab,” Nature 582(7811), 193–197 (2020).
- A. R. Pollard, E. R. Moan, C. A. Sackett, E. R. Elliott, and R. J. Thompson, “Quasi-Adiabatic External State Preparation of Ultracold Atoms in Microgravity,” Microgravity Sci. Technol. 32, 1175–1184 (2020). URL https://link.springer.com/article/10.1007/s12217-020-09840-w.
- N. Gaaloul, M. Meister, R. Corgier, A. Pichery, P. Boegel, W. Herr, H. Ahlers, E. Charron, J. R. Williams, R. J. Thompson, W. P. Schleich, E. M. Rasel, and N. P. Bigelow, “A space-based quantum gas laboratory at picokelvin energy scales,” Nat. Commun. 13(1), 7889 (2022). URL https://doi.org/10.1038/s41467-022-35274-6.
- R. A. Carollo, D. C. Aveline, B. Rhyno, S. Vishveshwara, C. Lannert, J. D. Murphree, E. R. Elliott, J. R. Williams, R. J. Thompson, and N. Lundblad, “Observation of ultracold atomic bubbles in orbital microgravity,” Nature 606(7913), 281–286 (2022). URL https://doi.org/10.1038/s41586-022-04639-8.
- E. R. Elliott, D. C. Aveline, N. P. Bigelow, P. Boegel, S. Botsi, E. Charron, J. P. D’Incao, P. Engels, T. Estrampes, N. Gaaloul, J. R. Kellogg, J. M. Kohel, N. E. Lay, N. Lundblad, M. Meister, M. E. Mossman, G. Müller, H. Müller, K. Oudrhiri, L. E. Phillips, A. Pichery, E. M. Rasel, C. A. Sackett, M. Sbroscia, W. P. Schleich, R. J. Thompson, and J. R. Williams, “Quantum gas mixtures and dual-species atom interferometry in space,” Nature 623(7987), 502–508 (2023). URL https://doi.org/10.1038/s41586-023-06645-w.
- K. Bongs, M. Holynski, J. Vovrosh, P. Bouyer, G. Condon, E. Rasel, C. Schubert, W. P. Schleich, and A. Roura, “Taking atom interferometric quantum sensors from the laboratory to real-world applications,” Nature Rev. Phys. 1, 731–739 (2019). URL https://doi.org/10.1038/s42254-019-0117-4.
- M. Kasevich and S. Chu, “Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer,” Appl. Phys. B 54(5), 321–332 (1992). URL https://doi.org/10.1007/BF00325375.
- X. Wu, Z. Pagel, B. S. Malek, T. H. Nguyen, F. Zi, D. S. Scheirer, and H. Müller, “Gravity surveys using a mobile atom interferometer,” Sci. Adv. 5(9), eaax0800 (2019). eprint https://www.science.org/doi/pdf/10.1126/sciadv.aax0800, URL https://www.science.org/doi/abs/10.1126/sciadv.aax0800.
- C. Freier, M. Hauth, V. Schkolnik, B. Leykauf, M. Schilling, H. Wziontek, H.-G. Scherneck, J. Müller, and A. Peters, “Mobile quantum gravity sensor with unprecedented stability,” J. Phys.: Conf. Ser. 723(1), 012,050 (2016). URL https://dx.doi.org/10.1088/1742-6596/723/1/012050.
- P. A. Altin, M. T. Johnsson, V. Negnevitsky, G. R. Dennis, R. P. Anderson, J. E. Debs, S. S. Szigeti, K. S. Hardman, S. Bennetts, G. D. McDonald, L. D. Turner, J. D. Close, and N. P. Robins, “Precision atomic gravimeter based on Bragg diffraction,” New J. Phys. 15(2), 023,009 (2013). URL https://dx.doi.org/10.1088/1367-2630/15/2/023009.
- P. Gillot, B. Cheng, A. Imanaliev, S. Merlet, and F. Pereira Dos Santos, “The LNE-SYRTE cold atom gravimeter,” in Proceedings of the 2016 European Frequency and Time Forum (EFTF), pp. 1–3 (York, UK, 2016). York, UK.
- M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth’s Gravity Gradient with an Atom Interferometer-Based Gravity Gradiometer,” Phys. Rev. Lett. 81, 971–974 (1998). URL https://link.aps.org/doi/10.1103/PhysRevLett.81.971.
- J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033,608 (2002). URL https://link.aps.org/doi/10.1103/PhysRevA.65.033608.
- N. Yu, J. Kohel, J. Kellogg, and L. Maleki, “Development of an atom-interferometer gravity gradiometer for gravity measurement from space,” Appl. Phys. B 84(4), 647–652 (2006). URL http://link.springer.com/10.1007/s00340-006-2376-x.
- G. Ferrari, N. Poli, F. Sorrentino, and G. M. Tino, “Long-Lived Bloch Oscillations with Bosonic Sr Atoms and Application to Gravity Measurement at the Micrometer Scale,” Phys. Rev. Lett. 97, 060,402 (2006). URL https://link.aps.org/doi/10.1103/PhysRevLett.97.060402.
- L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, Y. Zhang, and M. Zhan, “Test of Equivalence Principle at 10−8superscript1081{0}^{-8}10 start_POSTSUPERSCRIPT - 8 end_POSTSUPERSCRIPT Level by a Dual-Species Double-Diffraction Raman Atom Interferometer,” Phys. Rev. Lett. 115, 013,004 (2015).
- P. Asenbaum, C. Overstreet, M. Kim, J. Curti, and M. A. Kasevich, “Atom-Interferometric Test of the Equivalence Principle at the 10−12superscript1012{10}^{-12}10 start_POSTSUPERSCRIPT - 12 end_POSTSUPERSCRIPT Level,” Phys. Rev. Lett. 125, 191,101 (2020). URL https://link.aps.org/doi/10.1103/PhysRevLett.125.191101.
- D. Schlippert, J. Hartwig, H. Albers, L. L. Richardson, C. Schubert, A. Roura, W. P. Schleich, W. Ertmer, and E. M. Rasel, “Quantum Test of the Universality of Free Fall,” Phys. Rev. Lett. 112, 203,002 (2014). URL https://link.aps.org/doi/10.1103/PhysRevLett.112.203002.
- S. Loriani, A. Friedrich, C. Ufrecht, F. Di Pumpo, S. Kleinert, S. Abend, N. Gaaloul, C. Meiners, C. Schubert, D. Tell, É. Wodey, M. Zych, W. Ertmer, A. Roura, D. Schlippert, W. P. Schleich, E. M. Rasel, and E. Giese, “Interference of clocks: A quantum twin paradox,” Sci. Adv. 5(10), eaax8966 (2019). URL https://advances.sciencemag.org/content/5/10/eaax8966.
- A. Roura, “Gravitational Redshift in Quantum-Clock Interferometry,” Phys. Rev. X 10, 021,014 (2020). URL https://link.aps.org/doi/10.1103/PhysRevX.10.021014.
- A. Roura, C. Schubert, D. Schlippert, and E. M. Rasel, “Measuring gravitational time dilation with delocalized quantum superpositions,” Phys. Rev. D 104, 084,001 (2021). URL https://link.aps.org/doi/10.1103/PhysRevD.104.084001.
- F. Di Pumpo, C. Ufrecht, A. Friedrich, E. Giese, W. P. Schleich, and W. G. Unruh, “Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers,” PRX Quantum 2, 040,333 (2021). URL https://link.aps.org/doi/10.1103/PRXQuantum.2.040333.
- F. Di Pumpo, A. Friedrich, C. Ufrecht, and E. Giese, “Universality-of-clock-rates test using atom interferometry with T3superscript𝑇3{T}^{3}italic_T start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT scaling,” Phys. Rev. D 107, 064,007 (2023). URL https://link.aps.org/doi/10.1103/PhysRevD.107.064007.
- M. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, and C. W. Clark, “Search for New Physics with Atoms and Molecules,” Rev. Mod. Phys. 90, 025,008 (2018).
- L. Morel, Z. Yao, P. Cladé, and S. Guellati-Khélifa, “Determination of the fine-structure constant with an accuracy of 81 parts per trillion,” Nature 588(7836), 61–65 (2020). URL https://doi.org/10.1038/s41586-020-2964-7.
- R. H. Parker, C. Yu, W. Zhong, B. Estey, and H. Müller, “Measurement of the fine-structure constant as a test of the Standard Model,” Science 360(6385), 191–195 (2018). eprint https://www.science.org/doi/pdf/10.1126/science.aap7706, URL https://www.science.org/doi/abs/10.1126/science.aap7706.
- J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom Interferometer Measurement of the Newtonian Constant of Gravity,” Science 315(5808), 74–77 (2007). eprint https://www.science.org/doi/pdf/10.1126/science.1135459, URL https://www.science.org/doi/abs/10.1126/science.1135459.
- S.-Y. Lan, P.-C. Kuan, B. Estey, D. English, J. M. Brown, M. A. Hohensee, and H. Müller, “A Clock Directly Linking Time to a Particle’s Mass,” Science 339(6119), 554–557 (2013). eprint https://www.science.org/doi/pdf/10.1126/science.1230767, URL https://www.science.org/doi/abs/10.1126/science.1230767.
- A. Arvanitaki, P. W. Graham, J. M. Hogan, S. Rajendran, and K. Van Tilburg, “Search for light scalar dark matter with atomic gravitational wave detectors,” Phys. Rev. D 97, 075,020 (2018). URL https://link.aps.org/doi/10.1103/PhysRevD.97.075020.
- B. Elder, J. Khoury, P. Haslinger, M. Jaffe, H. Müller, and P. Hamilton, “Chameleon dark energy and atom interferometry,” Phys. Rev. D 94, 044,051 (2016). URL https://link.aps.org/doi/10.1103/PhysRevD.94.044051.
- M. Jaffe, P. Haslinger, V. Xu, P. Hamilton, A. Upadhye, B. Elder, J. Khoury, and H. Müller, “Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass,” Nature Phys. 13(10), 938–942 (2017). URL https://doi.org/10.1038/nphys4189.
- J. Williams, S. wey Chiow, N. Yu, and H. Müller, “Quantum test of the equivalence principle and space-time aboard the International Space Station,” New J. Phys. 18(2), 025,018 (2016). URL https://doi.org/10.1088/1367-2630/18/2/025018.
- H. Müller, S.-w. Chiow, S. Herrmann, S. Chu, and K.-Y. Chung, “Atom-Interferometry Tests of the Isotropy of Post-Newtonian Gravity,” Phys. Rev. Lett. 100, 031,101 (2008). URL https://link.aps.org/doi/10.1103/PhysRevLett.100.031101.
- J. Hartwig, S. Abend, C. Schubert, D. Schlippert, H. Ahlers, K. Posso-Trujillo, N. Gaaloul, W. Ertmer, and E. M. Rasel, “Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer,” New J. Phys. 17(3), 035,011 (2015). URL https://dx.doi.org/10.1088/1367-2630/17/3/035011.
- M. Abe, P. Adamson, M. Borcean, D. Bortoletto, K. Bridges, S. P. Carman, S. Chattopadhyay, J. Coleman, N. M. Curfman, K. DeRose, T. Deshpande, S. Dimopoulos, C. J. Foot, J. C. Frisch, B. E. Garber, S. Geer, V. Gibson, J. Glick, P. W. Graham, S. R. Hahn, R. Harnik, L. Hawkins, S. Hindley, J. M. Hogan, Y. Jiang, M. A. Kasevich, R. J. Kellett, M. Kiburg, T. Kovachy, J. D. Lykken, J. March-Russell, J. Mitchell, M. Murphy, M. Nantel, L. E. Nobrega, R. K. Plunkett, S. Rajendran, J. Rudolph, N. Sachdeva, M. Safdari, J. K. Santucci, A. G. Schwartzman, I. Shipsey, H. Swan, L. R. Valerio, A. Vasonis, Y. Wang, and T. Wilkason, “Matter-wave Atomic Gradiometer Interferometric Sensor (MAGIS-100),” Quantum Sci. Technol. 6(4), 044,003 (2021). URL https://doi.org/10.1088/2058-9565/abf719.
- C. Deppner, W. Herr, M. Cornelius, P. Stromberger, T. Sternke, C. Grzeschik, A. Grote, J. Rudolph, S. Herrmann, M. Krutzik, A. Wenzlawski, R. Corgier, E. Charron, D. Guéry-Odelin, N. Gaaloul, C. Lämmerzahl, A. Peters, P. Windpassinger, and E. M. Rasel, “Collective-Mode Enhanced Matter-Wave Optics,” Phys. Rev. Lett. 127, 100,401 (2021). URL https://link.aps.org/doi/10.1103/PhysRevLett.127.100401.
- T. van Zoest, N. Gaaloul, Y. Singh, H. Ahlers, W. Herr, S. T. Seidel, W. Ertmer, E. Rasel, M. Eckart, E. Kajari, S. Arnold, G. Nandi, W. P. Schleich, R. Walser, A. Vogel, K. Sengstock, K. Bongs, W. Lewoczko-Adamczyk, M. Schiemangk, T. Schuldt, A. Peters, T. Könemann, H. Müntinga, C. Lämmerzahl, H. Dittus, T. Steinmetz, T. W. Hänsch, and J. Reichel, “Bose-Einstein Condensation in Microgravity,” Science 328(5985), 1540–1543 (2010). eprint https://www.science.org/doi/pdf/10.1126/science.1189164, URL https://www.science.org/doi/abs/10.1126/science.1189164.
- H. Müntinga, H. Ahlers, M. Krutzik, A. Wenzlawski, S. Arnold, D. Becker, K. Bongs, H. Dittus, H. Duncker, N. Gaaloul, C. Gherasim, E. Giese, C. Grzeschik, T. W. Hänsch, O. Hellmig, W. Herr, S. Herrmann, E. Kajari, S. Kleinert, C. Lämmerzahl, W. Lewoczko-Adamczyk, J. Malcolm, N. Meyer, R. Nolte, A. Peters, M. Popp, J. Reichel, A. Roura, J. Rudolph, M. Schiemangk, M. Schneider, S. T. Seidel, K. Sengstock, V. Tamma, T. Valenzuela, A. Vogel, R. Walser, T. Wendrich, P. Windpassinger, W. Zeller, T. van Zoest, W. Ertmer, W. P. Schleich, and E. M. Rasel, “Interferometry with Bose-Einstein Condensates in Microgravity,” Phys. Rev. Lett. 110, 093,602 (2013). URL https://link.aps.org/doi/10.1103/PhysRevLett.110.093602.
- C. Lotz, T. Froböse, A. Wanner, L. Overmeyer, and W. Ertmer, “Einstein-Elevator: A New Facility for Research from µg𝑔gitalic_g to 5g𝑔gitalic_g,” Gravitat. Space Res. 5(2), 11–27 (2017). URL https://doi.org/10.2478/gsr-2017-0007.
- Center of Applied Space Technology And Microgravity (ZARM), University of Bremen, “GraviTower Bremen Pro,” URL https://www.zarm.uni-bremen.de/en/drop-tower/general-information.html.
- R. Geiger, V. Ménoret, G. Stern, N. Zahzam, P. Cheinet, B. Battelier, A. Villing, F. Moron, M. Lours, Y. Bidel, A. Bresson, A. Landragin, and P. Bouyer, “Detecting inertial effects with airborne matter-wave interferometry,” Nat. Commun. 2, 474 (2011).
- B. Barrett, L. Antoni-Micollier, L. Chichet, B. Battelier, T. Lévèque, A. Landragin, and P. Bouyer, “Dual matter-wave inertial sensors in weightlessness,” Nat. Commun. 7(13786), 16 (2016). URL https://www.nature.com/articles/ncomms13786.
- L. Badurina, E. Bentine, D. Blas, K. Bongs, D. Bortoletto, T. Bowcock, K. Bridges, W. Bowden, O. Buchmueller, C. Burrage, J. Coleman, G. Elertas, J. Ellis, C. Foot, V. Gibson, M. Haehnelt, T. Harte, S. Hedges, R. Hobson, M. Holynski, T. Jones, M. Langlois, S. Lellouch, M. Lewicki, R. Maiolino, P. Majewski, S. Malik, J. March-Russell, C. McCabe, D. Newbold, B. Sauer, U. Schneider, I. Shipsey, Y. Singh, M. Uchida, T. Valenzuela, M. van der Grinten, V. Vaskonen, J. Vossebeld, D. Weatherill, and I. Wilmut, “AION: An atom interferometer observatory and network,” J. Cosmol. Astropart. Phys. 2020(05), 011–011 (2020). URL https://doi.org/10.1088/1475-7516/2020/05/011.
- K. Frye, S. Abend, W. Bartosch, A. Bawamia, D. Becker, H. Blume, C. Braxmaier, S.-W. Chiow, M. A. Efremov, W. Ertmer, P. Fierlinger, T. Franz, N. Gaaloul, J. Grosse, C. Grzeschik, O. Hellmig, V. A. Henderson, W. Herr, U. Israelsson, J. Kohel, M. Krutzik, C. Kürbis, C. Lämmerzahl, M. List, D. Lüdtke, N. Lundblad, J. P. Marburger, M. Meister, M. Mihm, H. Müller, H. Müntinga, A. M. Nepal, T. Oberschulte, A. Papakonstantinou, J. Perovs̆ek, A. Peters, A. Prat, E. M. Rasel, A. Roura, M. Sbroscia, W. P. Schleich, C. Schubert, S. T. Seidel, J. Sommer, C. Spindeldreier, D. Stamper-Kurn, B. K. Stuhl, M. Warner, T. Wendrich, A. Wenzlawski, A. Wicht, P. Windpassinger, N. Yu, and L. Wörner, “The Bose-Einstein Condensate and Cold Atom Laboratory,” EPJ Quantum Technol. 8(1), 1 (2021). URL https://doi.org/10.1140/epjqt/s40507-020-00090-8.
- S.-w. Chiow and N. Yu, “Compact atom interferometer using single laser,” Appl. Phys. B 124(6), 96 (2018). URL https://doi.org/10.1007/s00340-018-6965-2.
- H. Ahlers, L. Badurina, A. Bassi, B. Battelier, Q. Beaufils, K. Bongs, P. Bouyer, C. Braxmaier, O. Buchmueller, M. Carlesso, E. Charron, M. L. Chiofalo, R. Corgier, S. Donadi, F. Droz, R. Ecoffet, J. Ellis, F. Estève, N. Gaaloul, D. Gerardi, E. Giese, J. Grosse, A. Hees, T. Hensel, W. Herr, P. Jetzer, G. Kleinsteinberg, C. Klempt, S. Lecomte, L. Lopes, S. Loriani, G. Métris, T. Martin, V. Martín, G. Müller, M. Nofrarias, F. P. D. Santos, E. M. Rasel, A. Robert, N. Saks, M. Salter, D. Schlippert, C. Schubert, T. Schuldt, C. F. Sopuerta, C. Struckmann, G. M. Tino, T. Valenzuela, W. von Klitzing, L. Wörner, P. Wolf, N. Yu, and M. Zelan, “STE-QUEST: Space Time Explorer and QUantum Equivalence principle Space Test,” arXiv:2211.15412 (2022). eprint 2211.15412, URL https://arxiv.org/abs/2211.15412.
- M. D. Lachmann, H. Ahlers, D. Becker, A. N. Dinkelaker, J. Grosse, O. Hellmig, H. Müntinga, V. Schkolnik, S. T. Seidel, T. Wendrich, A. Wenzlawski, B. Carrick, N. Gaaloul, D. Lüdtke, C. Braxmaier, W. Ertmer, M. Krutzik, C. Lämmerzahl, A. Peters, W. P. Schleich, K. Sengstock, A. Wicht, P. Windpassinger, and E. M. Rasel, “Ultracold atom interferometry in space,” Nat. Commun. 12(1), 1317 (2021). URL https://doi.org/10.1038/s41467-021-21628-z.
- V. Xu, M. Jaffe, C. D. Panda, S. L. Kristensen, L. W. Clark, and H. Müller, “Probing gravity by holding atoms for 20 seconds,” Science 366(6466), 745–749 (2019). eprint https://www.science.org/doi/pdf/10.1126/science.aay6428, URL https://www.science.org/doi/abs/10.1126/science.aay6428.
- D. Becker, M. D. Lachmann, S. T. Seidel, H. Ahlers, A. N. Dinkelaker, J. Grosse, O. Hellmig, H. Müntinga, V. Schkolnik, T. Wendrich, A. Wenzlawski, B. Weps, R. Corgier, T. Franz, N. Gaaloul, W. Herr, D. Lüdtke, M. Popp, S. Amri, H. Duncker, M. Erbe, A. Kohfeldt, A. Kubelka-Lange, C. Braxmaier, E. Charron, W. Ertmer, M. Krutzik, C. Lämmerzahl, A. Peters, W. P. Schleich, K. Sengstock, R. Walser, A. Wicht, P. Windpassinger, and E. M. Rasel, “Space-borne Bose-Einstein condensation for precision interferometry,” Nature 562(7727), 391–395 (2018). URL https://doi.org/10.1038/s41586-018-0605-1.
- H. Müller, S.-w. Chiow, Q. Long, S. Herrmann, and S. Chu, “Atom Interferometry with up to 24-Photon-Momentum-Transfer Beam Splitters,” Phys. Rev. Lett. 100, 180,405 (2008). URL https://link.aps.org/doi/10.1103/PhysRevLett.100.180405.
- S. Hartmann, J. Jenewein, E. Giese, S. Abend, A. Roura, E. M. Rasel, and W. P. Schleich, “Regimes of atomic diffraction: Raman versus Bragg diffraction in retroreflective geometries,” Phys. Rev. A 101, 053,610 (2020). URL https://link.aps.org/doi/10.1103/PhysRevA.101.053610.
- K. Bongs, R. Launay, and M. A. Kasevich, “High-order inertial phase shifts for time-domain atom interferometers,” Appl. Phys. 84, 599 (2006).
- C. J. Bordé, “Quantum Theory of Atom-Wave Beam Splitters and Application to Multidimensional Atomic Gravito-Inertial Sensors,” Gen. Relativ. Gravit. 36(3), 475–502 (2004). URL https://doi.org/10.1023/B:GERG.0000010726.64769.6d.
- J. M. Hogan, D. M. S. Johnson, and M. A. Kasevich, “Light-pulse atom interferometry,” in Proceedings of the International School of Physics “Enrico Fermi”, E. Arimondo, W. Ertmer, W. P. Schleich, and E. Rasel, eds., vol. 168: Atom Optics and Space Physics, pp. 411–447 (IOS Press, Amsterdam, 2009). URL http://ebooks.iospress.nl/volumearticle/26737.
- M. Gersemann, M. Gebbe, S. Abend, C. Schubert, and E. Rasel, “Differential interferometry using a Bose-Einstein condensate,” Eur. Phys. J. D 74, 203 (2020).
- A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, “Optics and interferometry with atoms and molecules,” Rev. Mod. Phys. 81, 1051–1129 (2009). URL https://link.aps.org/doi/10.1103/RevModPhys.81.1051.
- A. Roura, W. Zeller, and W. P. Schleich, “Overcoming loss of contrast in atom interferometry due to gravity gradients,” New J. Phys. 16(12), 123,012 (2014). URL http://stacks.iop.org/1367-2630/16/i=12/a=123012.
- M. Meister, S. Arnold, D. Moll, M. Eckart, E. Kajari, M. A. Efremov, R. Walser, and W. P. Schleich, “Efficient Description of Bose–Einstein Condensates in Time-Dependent Rotating Traps,” in Advances in Atomic, Molecular, and Optical Physics, E. Arimondo, C. C. Lin, and S. F. Yelin, eds., vol. 66, pp. 375–438 (Academic Press, 2017). URL https://www.sciencedirect.com/science/article/pii/S1049250X17300174.
- J. E. Simsarian, J. Denschlag, M. Edwards, C. W. Clark, L. Deng, E. W. Hagley, K. Helmerson, S. L. Rolston, and W. D. Phillips, “Imaging the Phase of an Evolving Bose-Einstein Condensate Wave Function,” Phys. Rev. Lett. 85(10), 2040 (2000).
- S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, “Contrast Interferometry using Bose-Einstein Condensates to Measure h/mℎ𝑚h/mitalic_h / italic_m and α𝛼\alphaitalic_α,” Phys. Rev. Lett. 89, 140,401 (2002). URL https://link.aps.org/doi/10.1103/PhysRevLett.89.140401.
- G. T. Foster, J. B. Fixler, J. M. McGuirk, and M. A. Kasevich, “Method of phase extraction between coupled atom interferometers using ellipse-specific fitting,” Opt. Lett. 27(11), 951–953 (2002). URL https://opg.optica.org/ol/abstract.cfm?URI=ol-27-11-951.
- G. Varoquaux, R. A. Nyman, R. Geiger, P. Cheinet, A. Landragin, and P. Bouyer, “How to estimate the differential acceleration in a two-species atom interferometer to test the equivalence principle,” New J. Phys. 11(11), 113,010 (2009). URL https://dx.doi.org/10.1088/1367-2630/11/11/113010.
- M. G. Tarallo, T. Mazzoni, N. Poli, D. Sutyrin, X. Zhang, and G. Tino, “Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: Search for spin-gravity coupling effects,” Phys. Rev. Lett. 113(2), 023,005 (2014). URL https://doi.org/10.1103/PhysRevLett.113.023005.
- S. Kolkowitz, I. Pikovski, N. Langellier, M. D. Lukin, R. L. Walsworth, and J. Ye, “Gravitational wave detection with optical lattice atomic clocks,” Phys. Rev. D 94, 124,043 (2016). URL https://link.aps.org/doi/10.1103/PhysRevD.94.124043.
- J. M. Hogan and M. A. Kasevich, “Atom-interferometric gravitational-wave detection using heterodyne laser links,” Phys. Rev. A 94, 033,632 (2016). URL https://link.aps.org/doi/10.1103/PhysRevA.94.033632.
- J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S.-w. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low earth orbit (AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011). URL https://doi.org/10.1007/s10714-011-1182-x.
- N. Yu and M. Tinto, “Gravitational wave detection with single-laser atom interferometers,” Gen. Relativ. Gravit. 43(7), 1943–1952 (2011). URL https://doi.org/10.1007/s10714-010-1055-8.
- B. Canuel, A. Bertoldi, L. Amand, E. Pozzo di Borgo, T. Chantrait, C. Danquigny, M. Dovale Álvarez, B. Fang, A. Freise, R. Geiger, J. Gillot, S. Henry, J. Hinderer, D. Holleville, J. Junca, G. Lefèvre, M. Merzougui, N. Mielec, T. Monfret, S. Pelisson, M. Prevedelli, S. Reynaud, I. Riou, Y. Rogister, S. Rosat, E. Cormier, A. Landragin, W. Chaibi, S. Gaffet, and P. Bouyer, “Exploring gravity with the MIGA large scale atom interferometer,” Sci. Rep. 8(1), 14,064 (2018). URL https://doi.org/10.1038/s41598-018-32165-z.
- F. Sorrentino, K. Bongs, P. Bouyer, L. Cacciapuoti, M. de Angelis, H. Dittus, W. Ertmer, J. Hartwig, M. Hauth, S. Herrmann, K. Huang, M. Inguscio, E. Kajari, T. Könemann, C. Lämmerzahl, A. Landragin, G. Modugno, F. P. dos Santos, A. Peters, M. Prevedelli, E. M. Rasel, W. P. Schleich, M. Schmidt, A. Senger, K. Sengstock, G. Stern, G. M. Tino, T. Valenzuela, R. Walser, and P. Windpassinger, “The Space Atom Interferometer project: Status and prospects,” J. Phys.: Conf. Ser. 327(1), 012,050 (2011). URL https://doi.org/10.1088/1742-6596/327/1/012050.
- B. Battelier, B. Barrett, L. Fouché, L. Chichet, L. Antoni-Micollier, H. Porte, F. Napolitano, J. Lautier, A. Landragin, and P. Bouyer, “Development of compact cold-atom sensors for inertial navigation,” in Proc. SPIE 9900, J. Stuhler and A. J. Shields, eds., p. 990004 (SPIE, 2016). URL https://doi.org/10.1117/12.2228351.
- B. Fang, I. Dutta, P. Gillot, D. Savoie, J. Lautier, B. Cheng, C. L. G. Alzar, R. Geiger, S. Merlet, F. P. D. Santos, and A. Landragin, “Metrology with Atom Interferometry: Inertial Sensors from Laboratory to Field Applications,” J. Phys.: Conf. Ser. 723, 012,049 (2016). URL https://doi.org/10.1088/1742-6596/723/1/012049.
- M. Krutzik, “Matter wave interferometry in microgravity,” Ph.D. thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I (2014). URL http://dx.doi.org/10.18452/17050.
- W. M. Itano, J. C. Bergquist, J. J. Bollinger, J. M. Gilligan, D. J. Heinzen, F. L. Moore, M. G. Raizen, and D. J. Wineland, “Quantum projection noise: Population fluctuations in two-level systems,” Phys. Rev. A 47, 3554–3570 (1993). URL https://link.aps.org/doi/10.1103/PhysRevA.47.3554.
- S. Kleinert, E. Kajari, A. Roura, and W. P. Schleich, “Representation-free description of light-pulse atom interferometry including noninertial effects,” Phys. Reports 605, 1–50 (2015). URL http://dx.doi.org/10.1016/j.physrep.2015.09.004.
- S. R. Segal, Q. Diot, E. A. Cornell, A. A. Zozulya, and D. Z. Anderson, “Revealing buried information: Statistical processing techniques for ultracold-gas image analysis,” Phys. Rev. A 81, 053,601 (2010). URL https://link.aps.org/doi/10.1103/PhysRevA.81.053601.
- K. McPherson, E. Kelly, and J. Keller, “Acceleration environment of the International Space Station,” in 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, pp. AIAA 2009–0957 (2009). URL https://arc.aiaa.org/doi/abs/10.2514/6.2009-957.
- P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Yver-Leduc, and A. Landragin, “Measurement of the sensitivity function in a time-domain atomic interferometer,” IEEE Trans. Instrum. Meas. 57(6), 1141–1148 (2008).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.