Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 181 tok/s Pro
2000 character limit reached

Quantum Markov Decision Processes: General Theory, Approximations, and Classes of Policies (2402.14649v2)

Published 22 Feb 2024 in quant-ph, cs.SY, eess.SY, and math.OC

Abstract: In this paper, the aim is to develop a quantum counterpart to classical Markov decision processes (MDPs). Firstly, we provide a very general formulation of quantum MDPs with state and action spaces in the quantum domain, quantum transitions, and cost functions. Once we formulate the quantum MDP (q-MDP), our focus shifts to establishing the verification theorem that proves the sufficiency of Markovian quantum control policies and provides a dynamic programming principle. Subsequently, a comparison is drawn between our q-MDP model and previously established quantum MDP models (referred to as QOMDPs) found in the literature. Furthermore, approximations of q-MDPs are obtained via finite-action models, which can be formulated as QOMDPs. Finally, classes of open-loop and classical-state-preserving closed-loop policies for q-MDPs are introduced, along with structural results for these policies. In summary, we present a novel quantum MDP model aiming to introduce a new framework, algorithms, and future research avenues. We hope that our approach will pave the way for a new research direction in discrete-time quantum control.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube