Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention-Enhanced Prioritized Proximal Policy Optimization for Adaptive Edge Caching (2402.14576v3)

Published 8 Feb 2024 in cs.NI, cs.LG, cs.SY, and eess.SY

Abstract: This paper tackles the growing issue of excessive data transmission in networks. With increasing traffic, backhaul links and core networks are under significant traffic, leading to the investigation of caching solutions at edge routers. Many existing studies utilize Markov Decision Processes (MDP) to tackle caching problems, often assuming decision points at fixed intervals; however, real-world environments are characterized by random request arrivals. Additionally, critical file attributes such as lifetime, size, and priority significantly impact the effectiveness of caching policies, yet existing research fails to integrate all these attributes in policy design. In this work, we model the caching problem using a Semi-Markov Decision Process (SMDP) to better capture the continuous-time nature of real-world applications, enabling caching decisions to be triggered by random file requests. We then introduce a Proximal Policy Optimization (PPO)--based caching strategy that fully considers file attributes like lifetime, size, and priority. Simulations show that our method outperforms a recent Deep Reinforcement Learning-based technique. To further advance our research, we improved the convergence rate of PPO by prioritizing transitions within the replay buffer through an attention mechanism. This mechanism evaluates the similarity between the current state and all stored transitions, assigning higher priorities to transitions that exhibit greater similarity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Y. Liu, J. Jia, J. Cai, and T. Huang, “Deep reinforcement learning for reactive content caching with predicted content popularity in three-tier wireless networks,” IEEE Transactions on Network and Service Management, vol. 20, no. 1, pp. 486–501, 2023.
  2. I. U. Din, S. Hassan, M. K. Khan, M. Guizani, O. Ghazali, and A. Habbal, “Caching in information-centric networking: Strategies, challenges, and future research directions,” IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1443–1474, 2018.
  3. S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for content distribution networks,” in 2010 Proceedings IEEE INFOCOM, 2010, pp. 1–9.
  4. J. Shuja, K. Bilal, W. Alasmary, H. Sinky, and E. Alanazi, “Applying machine learning techniques for caching in next-generation edge networks: A comprehensive survey,” Journal of Network and Computer Applications, vol. 181, p. 103005, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1084804521000321
  5. H. Ahlehagh and S. Dey, “Video-aware scheduling and caching in the radio access network,” IEEE/ACM Transactions on Networking, vol. 22, no. 5, pp. 1444–1462, 2014.
  6. H. Wu, A. Nasehzadeh, and P. Wang, “A deep reinforcement learning-based caching strategy for iot networks with transient data,” IEEE Transactions on Vehicular Technology, vol. 71, no. 12, pp. 13 310–13 319, 2022.
  7. S. Ahangary, H. Chitsaz, M. J. Sobouti, A. H. Mohajerzadeh, M. H. Yaghmaee, and H. Ahmadi, “Reactive caching of viral content in 5g networks,” in 2020 3rd International Conference on Advanced Communication Technologies and Networking (CommNet), 2020, pp. 1–7.
  8. Z. Zhang, Y. Yang, M. Hua, C. Li, Y. Huang, and L. Yang, “Proactive caching for vehicular multi-view 3d video streaming via deep reinforcement learning,” IEEE Transactions on Wireless Communications, vol. 18, no. 5, pp. 2693–2706, 2019.
  9. W. Jiang, G. Feng, S. Qin, T. S. P. Yum, and G. Cao, “Multi-agent reinforcement learning for efficient content caching in mobile d2d networks,” IEEE Transactions on Wireless Communications, vol. 18, no. 3, pp. 1610–1622, 2019.
  10. J. Rao, H. Feng, C. Yang, Z. Chen, and B. Xia, “Optimal caching placement for d2d assisted wireless caching networks,” in 2016 IEEE International Conference on Communications (ICC), 2016, pp. 1–6.
  11. P. Wu, J. Li, L. Shi, M. Ding, K. Cai, and F. Yang, “Dynamic content update for wireless edge caching via deep reinforcement learning,” IEEE Communications Letters, vol. 23, no. 10, pp. 1773–1777, 2019.
  12. R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A framework for temporal abstraction in reinforcement learning,” Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.
  13. F. Niknia, P. Wang, A. Agarwal, and Z. Wang, “Edge caching based on deep reinforcement learning,” in 2023 IEEE/CIC International Conference on Communications in China (ICCC).   IEEE, 2023, pp. 1–6.
  14. N. Zhang, W. Wang, P. Zhou, and A. Huang, “Delay-optimal edge caching with imperfect content fetching via stochastic learning,” IEEE Transactions on Network and Service Management, vol. 19, no. 1, pp. 338–352, 2022.
  15. H. Zhu, Y. Cao, X. Wei, W. Wang, T. Jiang, and S. Jin, “Caching transient data for internet of things: A deep reinforcement learning approach,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2074–2083, 2018.
  16. A. Nasehzadeh and P. Wang, “A deep reinforcement learning-based caching strategy for internet of things,” in 2020 IEEE/CIC International Conference on Communications in China (ICCC).   IEEE, 2020, pp. 969–974.
  17. J. Yao and N. Ansari, “Caching in dynamic iot networks by deep reinforcement learning,” IEEE Internet of Things Journal, vol. 8, no. 5, pp. 3268–3275, 2021.
  18. C. Zhong, M. C. Gursoy, and S. Velipasalar, “Deep reinforcement learning-based edge caching in wireless networks,” IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 1, pp. 48–61, 2020.
  19. C. Sun, X. Li, J. Wen, X. Wang, Z. Han, and V. C. M. Leung, “Federated deep reinforcement learning for recommendation-enabled edge caching in mobile edge-cloud computing networks,” IEEE Journal on Selected Areas in Communications, vol. 41, no. 3, pp. 690–705, 2023.
  20. X. Huang, Z. Chen, Q. Chen, and J. Zhang, “Federated learning based qos-aware caching decisions in fog-enabled internet of things networks,” Digital Communications and Networks, vol. 9, no. 2, pp. 580–589, 2023. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352864822000712
  21. D. Gupta, S. Rani, B. Tiwari, and T. Gadekallu, “An edge communication based probabilistic caching for transient content distribution in vehicular networks,” Scientific Reports, vol. 13, 03 2023.
  22. K. Kazari, F. Ashtiani, and M. Mirmohseni, “Cache update and delivery of dynamic contents: A stochastic game approach,” IEEE Transactions on Mobile Computing, pp. 1–13, 2023.
  23. X. Wei, J. Liu, Y. Wang, C. Tang, and Y. Hu, “Wireless edge caching based on content similarity in dynamic environments,” Journal of Systems Architecture, vol. 115, p. 102000, 2021.
  24. E. Baştuğ, M. Bennis, and M. Debbah, “A transfer learning approach for cache-enabled wireless networks,” in 2015 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2015, pp. 161–166.
  25. J. Song, M. Sheng, T. Q. S. Quek, C. Xu, and X. Wang, “Learning-based content caching and sharing for wireless networks,” IEEE Transactions on Communications, vol. 65, no. 10, pp. 4309–4324, 2017.
  26. X. Zhou, M. Bilal, R. Dou, J. J. P. C. Rodrigues, Q. Zhao, J. Dai, and X. Xu, “Edge computation offloading with content caching in 6g-enabled iov,” IEEE Transactions on Intelligent Transportation Systems, pp. 1–15, 2023.
  27. J. Gao, S. Zhang, L. Zhao, and X. Shen, “The design of dynamic probabilistic caching with time-varying content popularity,” IEEE Transactions on Mobile Computing, vol. 20, no. 4, pp. 1672–1684, 2021.
  28. L. Zhao, H. Li, N. Lin, M. Lin, C. Fan, and J. Shi, “Intelligent content caching strategy in autonomous driving toward 6g,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 7, pp. 9786–9796, 2022.
  29. S. Li, J. Xu, M. van der Schaar, and W. Li, “Popularity-driven content caching,” in IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications, 2016, pp. 1–9.
  30. S. Vural, N. Wang, P. Navaratnam, and R. Tafazolli, “Caching transient data in internet content routers,” IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp. 1048–1061, 2017.
  31. H. Gomaa, G. G. Messier, C. Williamson, and R. Davies, “Estimating instantaneous cache hit ratio using markov chain analysis,” IEEE/ACM Transactions on Networking, vol. 21, no. 5, pp. 1472–1483, 2013.
  32. R. A. Horn, “The hadamard product,” in Proc. Symp. Appl. Math, vol. 40, 1990, pp. 87–169.
  33. F. Niknia, V. Hakami, and K. Rezaee, “An smdp-based approach to thermal-aware task scheduling in noc-based mpsoc platforms,” Journal of Parallel and Distributed Computing, vol. 165, pp. 79–106, 2022.
  34. B. Póczos, “Introduction to machine learning - reinforcement learning,” https://www.cs.cmu.edu/ mgormley/courses/10601-s17/slides/lecture26-ri.pdf, accessed: Accessed: Jan-7-2024.
  35. T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” arXiv preprint arXiv:1511.05952, 2015.
  36. T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning from demonstrations,” in Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.
  37. B. Piot, M. Geist, and O. Pietquin, “Boosted bellman residual minimization handling expert demonstrations,” in Machine Learning and Knowledge Discovery in Databases: European Conference.   Springer, 2014, pp. 549–564.
  38. T. Developers, “Tensorflow,” Zenodo, 2022.
  39. X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceedings of the fourteenth international conference on artificial intelligence and statistics.   JMLR Workshop and Conference Proceedings, 2011, pp. 315–323.

Summary

We haven't generated a summary for this paper yet.