Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Agent Reinforcement Learning for Cooperative Coded Caching via Homotopy Optimization (2006.13565v1)

Published 24 Jun 2020 in cs.IT and math.IT

Abstract: Introducing cooperative coded caching into small cell networks is a promising approach to reducing traffic loads. By encoding content via maximum distance separable (MDS) codes, coded fragments can be collectively cached at small-cell base stations (SBSs) to enhance caching efficiency. However, content popularity is usually time-varying and unknown in practice. As a result, cache contents are anticipated to be intelligently updated by taking into account limited caching storage and interactive impacts among SBSs. In response to these challenges, we propose a multi-agent deep reinforcement learning (DRL) framework to intelligently update cache contents in dynamic environments. With the goal of minimizing long-term expected fronthaul traffic loads, we first model dynamic coded caching as a cooperative multi-agent Markov decision process. Owing to MDS coding, the resulting decision-making falls into a class of constrained reinforcement learning problems with continuous decision variables. To deal with this difficulty, we custom-build a novel DRL algorithm by embedding homotopy optimization into a deep deterministic policy gradient formalism. Next, to empower the caching framework with an effective trade-off between complexity and performance, we propose centralized, partially and fully decentralized caching controls by applying the derived DRL approach. Simulation results demonstrate the superior performance of the proposed multi-agent framework.

Citations (26)

Summary

We haven't generated a summary for this paper yet.