Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Dynamical quantum maps for single-qubit gates under universal non-Markovian noise (2402.14530v3)

Published 22 Feb 2024 in quant-ph

Abstract: Noise is both ubiquitous and generally deleterious in settings where precision is required. This is especially true in the quantum technology sector where system utility typically decays rapidly under its influence. Understanding the noise in quantum devices is thus a prerequisite for efficient strategies to mitigate or even eliminate its harmful effects. However, this requires resources that are often prohibitive, such that the typically-used noise models rely on simplifications that sometimes depart from experimental reality. Here we derive a compact microscopic error model for single-qubit gates that only requires a single experimental input - the noise power spectral density. Our model goes beyond standard depolarizing or Pauli-twirled noise models, explicitly including non-Clifford and non-Markovian contributions to the dynamical error map. We gauge our predictions for experimentally relevant metrics against established characterization techniques run on a trapped-ion quantum computer. In particular, we find that experimental estimates of average gate errors measured through randomized benchmarking and reconstructed via quantum process tomography are tightly lower-bounded by our analytical estimates, while the depolarizing model overestimates the gate error. Our noise modeling including non-Markovian contributions can be readily applied to established frameworks such as dynamical decoupling and dynamically-corrected gates, or to provide more realistic thresholds for quantum error correction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (68)
  1. D. Aharonov and M. Ben-Or, SIAM Journal on Computing 38, 1207 (2008).
  2. A. Kitaev, Annals of Physics 303, 2 (2003).
  3. A. M. Steane, Phys. Rev. A 68, 042322 (2003).
  4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
  5. K. Kraus, Annals of Physics 64, 311 (1971).
  6. M.-D. Choi, Linear Algebra and its Applications 10, 285 (1975).
  7. J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
  8. A. N. Korotkov, “Error matrices in quantum process tomography,”  (2013), arXiv:1309.6405 [quant-ph] .
  9. I. L. Chuang and M. A. Nielsen, Journal of Modern Optics 44, 2455 (1997).
  10. M. A. Nielsen, Physics Letters A 303, 249 (2002).
  11. S. B. Bravyi and A. Y. Kitaev, “Quantum codes on a lattice with boundary,”  (1998), arXiv:quant-ph/9811052 [quant-ph] .
  12. R. Raussendorf and J. Harrington, Phys. Rev. Lett. 98, 190504 (2007).
  13. J. J. Wallman and J. Emerson, Phys. Rev. A 94, 052325 (2016).
  14. J. Fiurášek and Z. c. v. Hradil, Phys. Rev. A 63, 020101 (2001).
  15. M. F. Sacchi, Phys. Rev. A 63, 054104 (2001).
  16. R. Blume-Kohout, J. K. Gamble, E. Nielsen, J. Mizrahi, J. D. Sterk,  and P. Maunz, “Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit,”  (2013), arXiv:1310.4492 [quant-ph] .
  17. P. Viñas et al, “Gate set tomography of single-qubit gates under time-correlated noise,”  (2024), arXiv:2401.xxx [quant-ph] .
  18. I. Arrazola et al, “Quantum noise spectroscopy and dynamical deocupling for realistic noisy pulses,”  (2024), arXiv:in preparation [quant-ph] .
  19. I. I. Rabi, Phys. Rev. 51, 652 (1937).
  20. L. Allen and J. H. Eberly, “Optical resonance and two-level atoms (dover books),”  (2023).
  21. A. G. Kofman and G. Kurizki, Nature 405, 546 (2000).
  22. A. G. Kofman and G. Kurizki, Phys. Rev. Lett. 87, 270405 (2001).
  23. A. G. Kofman and G. Kurizki, Phys. Rev. Lett. 93, 130406 (2004).
  24. D. Suter and G. A. Álvarez, Rev. Mod. Phys. 88, 041001 (2016).
  25. G. A. Álvarez and D. Suter, Physical Review Letters 107, 230501 (2011).
  26. G. Wang, Y. Zhu, B. Li, C. Li, L. Viola, A. Cooper,  and P. Cappellaro, “Digital noise spectroscopy with a quantum sensor,”  (2022), arXiv:2212.09216 [quant-ph] .
  27. R. Freund, C. D. Marciniak,  and T. Monz, “A self-referenced optical phase noise analyzer for quantum technologies,”  (2023), arXiv:2310.08258 [quant-ph] .
  28. S. P. O’duill and L. P. Barry, IEEE Access 10, 119875 (2022).
  29. N. V. Kampen, Stochastic processes in physics and chemistry (North Holland, 2007).
  30. C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed., edited by H. Haken (Springer, 2000).
  31. P. Zoller, “Theoretical Quantum Optics: A practical guide to stochastic processes & calculus (Master and PhD Course, University of Innsbruck),”  (2018).
  32. C. Gardiner and P. Zoller, The Quantum World of Ultra-Cold Atoms and Light Book I: Foundations of Quantum Optics (IMPERIAL COLLEGE PRESS, 2014) https://www.worldscientific.com/doi/pdf/10.1142/p941 .
  33. M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323 (1945).
  34. G. S. Agarwal, Phys. Rev. Lett. 37, 1383 (1976).
  35. H. J. Kimble and L. Mandel, Phys. Rev. A 15, 689 (1977).
  36. P. Zoller, Journal of Physics B: Atomic and Molecular Physics 10, L321 (1977).
  37. P. Avan and C. Cohen-Tannoudji, Journal of Physics B: Atomic and Molecular Physics 10, 155 (1977).
  38. G. E. Uhlenbeck and L. S. Ornstein, Phys. Rev. 36, 823 (1930).
  39. H. Haken, Light and matter Handbuch der Physik Encyclopedia of Physics (Springer-Verlag, 1970).
  40. R. Toral and P. Colet, “Stochastic numerical methods : an introduction for students and scientists,”  (2014).
  41. V. Solo, SIAM Journal on Applied Mathematics 52, 270 (1992).
  42. R. A. Horn and C. R. Johnson, Matrix Analysis (Cambridge University Press, 1985).
  43. J. N. Franklin, SIAM Review 7, 68 (1965).
  44. H. P. Breuer and F. Petruccione, The theory of open quantum systems (Oxford University Press, Great Clarendon Street, 2002).
  45. S. Chaturvedi and F. Shibata, Zeitschrift für Physik B Condensed Matter 35, 297 (1979).
  46. S. Nakajima, Progress of Theoretical Physics 20, 948 (1958).
  47. R. Zwanzig, The Journal of Chemical Physics 33, 1338 (2004).
  48. R. Terwiel, Physica 74, 248 (1974).
  49. G. Lindblad, Communications in Mathematical Physics 48, 119 (1976).
  50. R. C. Bourret, Canadian Journal of Physics 43, 619 (1965).
  51. C. P. Slichter and D. Ailion, Phys. Rev. 135, A1099 (1964).
  52. C. P. Slichter, Principles of magnetic resonance; 3rd ed., Springer series in solid-state sciences (Springer, Berlin, 1990).
  53. Z. Hradil, Phys. Rev. A 55, R1561 (1997).
  54. R. Blume-Kohout, “Robust error bars for quantum tomography,”  (2012), arXiv:1202.5270 [quant-ph] .
  55. W. K. Hastings, Biometrika 57, 97 (1970), https://academic.oup.com/biomet/article-pdf/57/1/97/23940249/57-1-97.pdf .
  56. R. T. R. Harper, Quantum Nescimus: Improving the characterization of quantum systems from limited information, Ph.D. thesis, School of Physics, The University of Sydney (2018).
  57. J. M. Sánchez Velázquez et al., https://doi.org/10.5281/zenodo.10461685 (2024).
  58. D. S. Lemons and A. Gythiel, American Journal of Physics 65, 1079 (1997).
  59. B. J. L. DooB, Annals of Mathematics 43, 351 (1942).
  60. G. Casella and R. Berger, Statistical Inference (Duxbury Resource Center, 2001).
  61. D. T. Gillespie, American Journal of Physics 64, 225 (1996).
  62. I. de Vega and D. Alonso, Rev. Mod. Phys. 89, 015001 (2017).
  63. D. Chruściński, Physics Reports 992, 1 (2022), dynamical maps beyond Markovian regime.
  64. R. Kubo, Journal of the Physical Society of Japan 17, 1100 (1962).
  65. N. Van Kampen, Physica 74, 215 (1974).
  66. R. F. Fox, Journal of Mathematical Physics 17, 1148 (2008).
  67. P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269 (1953).
  68. R. Kubo, Journal of Mathematical Physics 4, 174 (1963).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com