Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 84 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Kimi K2 157 tok/s Pro
2000 character limit reached

Two photons everywhere (2402.14010v1)

Published 21 Feb 2024 in quant-ph

Abstract: We discuss two-photon physics, taking for illustration the particular but topical case of resonance fluorescence. We show that the basic concepts of interferences and correlations provide at the two-photon level an independent and drastically different picture than at the one-photon level, with landscapes of correlations that reveal various processes by spanning over all the possible frequencies at which the system can emit. Such landscapes typically present lines of photon bunching and circles of antibunching. The theoretical edifice to account for these features rests on two pillars: i) a theory of frequency-resolved photon correlations and ii) admixing classical and quantum fields. While experimental efforts have been to date concentrated on correlations between spectral peaks, strong correlations exist between photons emitted away from the peaks, which are accessible only through multiphoton observables. These could be exploited for both fundamental understanding of quantum-optical processes as well as applications by harnessing these unsuspected resources.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (93)
  1. Bohr, N. On the constitution of atoms and molecules. Philos. Mag. 26, 1 (1913). URL doi:10.1080/14786441308634955.
  2. Slipher, V. M. On the spectrum of the nebula in the pleiades. Low. Obs. Bull. 2, 26 (1912). URL https://ui.adsabs.harvard.edu/abs/1912LowOB...2...26S/abstract.
  3. Page, T. L. The continuous spectra of certain planetary nebulæ. a photometric study. Mon. Notices Royal Astron. Soc. 96, 604 (1936). URL doi:10.1093/mnras/96.6.604.
  4. Zanstra, H. An argument against scattering in planetary nebulae. Observatory 59, 314 (1936). URL https://ui.adsabs.harvard.edu/abs/1936Obs....59..314Z/abstract.
  5. Kipper, A. Sbornik “O Razvitii Sovetskoi Nauki v E’stonckoi S.S.R.” (on the development of Soviet science in the Estonean S.S.R.). Tallin 316 (1950).
  6. Continuous emission from planetary nebulae. Ap. J. 114, 407 (1951). URL doi:10.1086/145480.
  7. Göppert, M. Über die Wahrscheinlichkeit des Zusammenwirkens zweier Lichtquanten in einem Elementarakt. Naturwiss. 17, 932 (1929). URL doi:10.1007/bf01506585.
  8. Metastability of hydrogen and helium levels. Ap. J. 91, 215 (1940). URL doi:10.1086/144158.
  9. Direct detection of two-photon emission from the metastable state of singly ionized helium. Phys. Rev. Lett. 15, 690 (1965). URL doi:10.1103/physrevlett.15.690.
  10. QED theory of multiphoton transitions in atoms and ions. Phys. Rep. 737, 1 (2018). URL doi:10.1016/j.physrep.2018.02.003.
  11. Two-photon decay of hydrogenic atoms. Phys. Rev. A 30, 1175 (1984). URL doi:10.1103/physreva.30.1175.
  12. Enhanced two-photon emission. Phys. Rev. Lett. 20, 1282 (1968). URL doi:10.1103/PhysRevLett.20.1282.
  13. Observation of two-photon emission from semiconductors. Nature Photon. 2, 256 (2008). URL doi:10.1038/nphoton.2008.28.
  14. Shrinking light to allow forbidden transitions on the atomic scale. Science 353, 263 (2016). URL doi:10.1126/science.aaf6308.
  15. Theory of frequency-filtered and time-resolved n𝑛nitalic_n-photon correlations. Phys. Rev. Lett. 109, 183601 (2012). URL doi:10.1103/PhysRevLett.109.183601.
  16. Conventional and unconventional photon statistics. Laser Photon. Rev. 14, 1900279 (2020). URL doi:10.1002/lpor.201900279.
  17. Loudon, R. Squeezing in resonance fluorescence. Opt. Commun. 49, 24 (1984). URL doi:10.1016/0030-4018(84)90083-X.
  18. Theory of two-photon resonance fluorescence. Opt. Lett. 10, 405 (1985). URL doi:10.1364/OL.10.000405.
  19. Two-photon gain and lasing in strongly driven two-level atoms. Phys. Rev. Lett. 64, 3131 (1990). URL doi:10.1103/PhysRevLett.64.3131.
  20. Heitler, W. The Quantum Theory of Radiation (Oxford University Press, 1954), 3 edn.
  21. Mollow, B. R. Power spectrum of light scattered by two-level systems. Phys. Rev. 188, 1969 (1969). URL doi:10.1103/PhysRev.188.1969.
  22. The time-dependent physical spectrum of light. J. Opt. Soc. Am. 67, 1252 (1977). URL doi:10.1364/JOSA.67.001252. TDS1.3.
  23. Gardiner, C. W. Driving a quantum system with the output field from another driven quantum system. Phys. Rev. Lett. 70, 2269 (1993). URL doi:10.1103/PhysRevLett.70.2269.
  24. Carmichael, H. J. Quantum trajectory theory for cascaded open systems. Phys. Rev. Lett. 70, 2273 (1993). URL doi:10.1103/PhysRevLett.70.2273.
  25. Frequency-resolved Monte Carlo. Sci. Rep. 8, 6975 (2018). URL doi:10.1038/s41598-018-24975-y.
  26. Mollow triplet. Wolfram Demonstrations Project (2013). https://demonstrations.wolfram.com/MollowTriplet.
  27. Dressed-atom description of resonance fluorescence and absorption spectra of a multi-level atom in an intense laser beam. J. Phys. B.: At. Mol. Phys. 10, 345 (1977). URL sci/cohentannoudji77a.
  28. Photon statistics and quantum jumps: the picture of the dressed atom radiative cascade. IEEE Quantum Electron. 24, 1395 (1988). URL doi:10.1109/3.979.
  29. Correlation signals in resonance fluorescence : interpretation via photon scattering amplitudes. J. Phys. France 44, 1337 (1983). URL doi:10.1051/jphys:0198300440120133700.
  30. Dressing up atoms to explain resonance fluorescence. J. Phys. B.: At. Mol. Phys. 49, 200502 (2016). URL doi:10.1088/0953-4075/49/20/200502.
  31. Photon liquefaction in time (2023). arXiv:2312.17732.
  32. Nguyen, H. S. et al. Ultra-coherent single photon source. Appl. Phys. Lett. 99, 261904 (2011). URL doi:10.1063/1.4719077.
  33. Subnatural linewidth single photons from a quantum dot. Phys. Rev. Lett. 108, 093602 (2012). URL doi:10.1103/PhysRevLett.108.093602.
  34. Spectral filtering within the Schawlow-Townes linewidth of a semiconductor laser. Phys. Rev. Lett. 69, 593 (1992). URL doi:10.1103/PhysRevLett.69.593.
  35. Joint subnatural-linewidth and single-photon emission from resonance fluorescence. Quantum Sci. Technol. 3, 045001 (2018). URL doi:10.1088/2058-9565/aacfbe.
  36. Antibunching and unconventional photon blockade with gaussian squeezed states. Phys. Rev. A 90, 063824 (2014). URL doi:10.1103/PhysRevA.90.063824.
  37. Mandel, L. Squeezed states and sub-poissonian photon statistics. Phys. Rev. Lett. 49, 136 (1982). URL doi:10.1103/PhysRevLett.49.136.
  38. Conditions for sub-poissonian photon statistics and squeezed states in resonance fluorescence. Opt. Acta 30, 1573 (1983). URL doi:10.1080/713821098.
  39. Stoler, D. Equivalence classes of minimum uncertainty packets. Phys. Rev. D 1, 3217 (1970). URL doi:10.1103/PhysRevD.1.3217.
  40. Quantum optics and electronics, chap. R. Glauber: Optical Coherence and Photon Statistics (Gordon and Breach, New York, 1964).
  41. Reduced quantum fluctuations in resonance fluorescence. Phys. Rev. Lett. 47, 709 (1981). URL doi:10.1103/PhysRevLett.47.709.
  42. A quantum-mechanical master equation treatment of the dynamical Stark effect. J. Phys. B.: At. Mol. Phys. 9, 1199 (1976). URL doi:10.1088/0022-3700/9/8/007.
  43. Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691 (1977). URL doi:10.1103/PhysRevLett.39.691.
  44. Observation of squeezing in the phase-dependent fluorescence spectra of two-level atoms. Phys. Rev. Lett. 81, 3635 (1998). URL doi:10.1103/PhysRevLett.81.3635.
  45. Carmichael, H. J. Photon antibunching and squeezing for a single atom in a resonant cavity. Phys. Rev. Lett. 55, 2790 (1985). URL doi:10.1103/PhysRevLett.55.2790.
  46. Ou, Z.-Y. J. Multi-Photon Quantum Interference (Springer, 2007).
  47. Quantum Interference and Coherence: Theory and Experiments (Springer, 2004).
  48. Tuning photon statistics with coherent fields. Phys. Rev. A 101, 063824 (2020). URL doi:10.1103/PhysRevA.101.063824.
  49. Loudon, R. The quantum theory of light (Oxford Science Publications, 2000), 3 edn.
  50. Carmichael, H. J. Statistical methods in quantum optics 1 (Springer, 2002), 2 edn.
  51. Stoler, D. Photon antibunching and possible ways to observe it. Phys. Rev. Lett. 33, 1397 (1974). URL doi:10.1103/PhysRevLett.33.1397.
  52. Theory of resonance fluorescence. Phys. Rev. A 13, 2123 (1976). URL doi:10.1103/PhysRevA.13.2123.
  53. Photon antibunching in pulsed squeezed light generated via parametric amplification. Phys. Rev. Lett. 71, 1164 (1993). URL doi:10.1103/PhysRevLett.71.1164.
  54. Observation of nonclassical photon statistics due to quantum interference. Phys. Rev. Lett. 88, 023601 (2001). URL doi:10.1103/PhysRevLett.88.023601.
  55. Hanschke, L. et al. Origin of antibunching in resonance fluorescence. Phys. Rev. Lett. 125, 170402 (2020). URL doi:10.1103/PhysRevLett.125.170402.
  56. Loss of antibunching. Phys. Rev. A 105, 023724 (2022). URL doi:10.1103/PhysRevA.105.023724.
  57. Fischer, K. A. et al. Self-homodyne measurement of a dynamic Mollow triplet in the solid state. Nature Phys. 10, 163 (2016). URL doi:10.1038/nphoton.2015.276.
  58. Phillips, C. L. et al. Photon statistics of filtered resonance fluorescence. Phys. Rev. Lett. 125, 043603 (2020). URL doi:10.1103/PhysRevLett.125.043603.
  59. Masters, L. et al. On the simultaneous scattering of two photons by a single two-level atom. Nature Photon. 17, 972 (2023). URL doi:10.1038/s41566-023-01260-7.
  60. Glauber, R. J. Photon correlations. Phys. Rev. Lett. 10, 84 (1963). URL doi:10.1103/PhysRevLett.10.84.
  61. del Valle, E. Distilling one, two and entangled pairs of photons from a quantum dot with cavity QED effects and spectral filtering. New J. Phys. 15, 025019 (2013). URL doi:10.1088/1367-2630/15/2/025019.
  62. Two-photon spectra of quantum emitters. New J. Phys. 15, 033036 (2013). URL doi:10.1088/1367-2630/15/3/033036.
  63. Photon correlations between the lines in the spectrum of resonance fluorescence. J. Phys. B.: At. Mol. Phys. 17, 963 (1984). URL doi:10.1088/0022-3700/17/6/011.
  64. Theory of n𝑛nitalic_n-fold time-resolved correlation spectroscopy and its application to resonance fluorescence radiation. J. Phys. B.: At. Mol. Phys. 19, 2817 (1986). URL doi:10.1088/0022-3700/19/18/012.
  65. Cresser, J. D. Intensity correlations of frequency-filtered light fields. J. Phys. B.: At. Mol. Phys. 20, 4915 (1987). URL doi:10.1088/0022-3700/20/18/027.
  66. Optimization of photon correlations by frequency filtering. Phys. Rev. A 91, 043807 (2015). URL doi:10.1103/PhysRevA.91.043807.
  67. Photon correlations from the Mollow triplet. Laser Photon. Rev. 11, 1700090 (2017). URL doi:10.1002/lpor.201700090.
  68. Intensity correlations between the components of the resonance fluorescence triplet. Phys. Rev. A 45, 8045 (1992). URL doi:10.1103/PhysRevA.45.8045.
  69. Nienhuis, G. Spectral correlations in resonance fluorescence. Phys. Rev. A 47, 510 (1993). URL doi:10.1103/PhysRevA.47.510.
  70. Peiris, M. et al. Two-color photon correlations of the light scattered by a quantum dot. Phys. Rev. B 91, 195125 (2015). URL doi:10.1103/PhysRevB.91.195125.
  71. Franson interference generated by a two-level system. Phys. Rev. Lett. 118, 030501 (2017). URL doi:10.1103/PhysRevLett.118.030501.
  72. Third-order frequency-resolved photon correlations in resonance fluorescence. Phys. Rev. B 98, 165432 (2018). URL doi:10.1103/PhysRevB.98.165432.
  73. Third-order photon cross-correlations in resonance fluorescence. Phys. Rev. B 102, 155418 (2020). URL doi:10.1103/PhysRevB.102.155418.
  74. Sánchez Muñoz, C. et al. Emitters of N𝑁Nitalic_N-photon bundles. Nature Photon. 8, 550 (2014). URL doi:10.1038/nphoton.2014.114.
  75. Walls, D. F. Squeezed states of light. Nature 306, 141 (1983). URL doi:10.1038/306141a0.
  76. Caves, C. M. Quantum-mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981). URL doi:10.1103/PhysRevD.23.1693.
  77. Yuen, H. P. Two-photon coherent states of the radiation field. Phys. Rev. A 13, 2226 (1976). URL doi:10.1103/PhysRevA.13.2226.
  78. Multimode squeeze operators and squeezed states. Phys. Rev. A 41, 4625 (1990). URL doi:10.1103/PhysRevA.41.4625.
  79. Quantum interference in two-photon excitation with squeezed and coherent fields. Phys. Rev. A 59, 676 (1999).
  80. Mollow triplet under incoherent pumping. Phys. Rev. Lett. 105, 233601 (2010). URL doi:10.1103/PhysRevLett.105.233601.
  81. Ulhaq, A. et al. Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot. Nature Photon. 6, 238 (2012). URL doi:10.1038/nphoton.2012.23.
  82. Two-photon correlations in detuned resonance fluorescence. Phys. Scr. 98, 055104 (2023). URL doi:10.1088/1402-4896/acc89e.
  83. Loudon, R. Squeezing in two-photon absorption. Opt. Commun. 49, 67 (1984). URL doi:10.1016/0030-4018(84)90092-0.
  84. Schulte, C. H. H. et al. Quadrature squeezed photons from a two-level system. Nature 525, 222 (2015). URL doi:10.1038/nature14868.
  85. Violation of classical inequalities by photon frequency filtering. Phys. Rev. A 90, 052111 (2014). URL doi:10.1103/PhysRevA.90.052111.
  86. Hillery, M. Sum and difference squeezing of the electromagnetic field. Phys. Rev. A 40, 3147 (1989). URL doi:10.1103/PhysRevA.40.3147.
  87. Spectral line elimination and spontaneous emission cancellation via quantum interference. Phys. Rev. Lett. 76, 388 (1996). URL doi:10.1103/physrevlett.76.388.
  88. Armstrong, S. et al. Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks. Nature Phys. 11, 167 (2015). URL doi:10.1038/nphys3202.
  89. Shalm, L. K. et al. Three-photon energy-time entanglement. Nature Phys. 9, 19 (2013). URL doi:10.1038/nphys2492.
  90. del Valle, E. Strong and weak coupling of two coupled qubits. Phys. Rev. A 81, 053811 (2010). URL doi:10.1103/PhysRevA.81.053811.
  91. del Valle, E. Steady state entanglement of two coupled qubits. J. Opt. Soc. Am. B 28, 228 (2011). URL doi:10.1364/JOSAB.28.000228.
  92. Regimes of strong light-matter coupling under incoherent excitation. Phys. Rev. A 84, 043816 (2011). URL doi:10.1103/PhysRevA.84.043816.
  93. Mukamel, S. et al. Roadmap on quantum light spectroscopy. J. Opt. B 53, 072002 (2020). URL doi:10.1088/1361-6455/ab69a8.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.