Achiral nanostructures: perturbative harmonic generation and dichroism under vortex and vector beams illumination (2402.13947v3)
Abstract: In this study, we investigate the nonlinear optical phenomena emerging from the interaction of vortex and vector beams with achiral nanoparticles or nanostructures. We reveal the conditions under which linear or nonlinear dichroism can be observed. Despite the achiral symmetry of the nanostructure, the interplay between the symmetries of the vortex beam, the nanostructure, and the crystalline lattice of the nanostructure material may result in circular dichroism in the nonlinear regime. We derive a formula that describes the conditions for the appearance of circular dichroism across a broad range of scenarios, taking into account all the symmetries. Building on these findings, we have determined the conditions for both linear and nonlinear dichroism when illuminated by vector beams. We believe that this work provides important insights that can enhance the design of chiral sensors and optical traps, making them more versatile and effective.
- Louis Pasteur. Recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et les sens de la polarisation rotatoire. Ann. Chim. Phys, xxiv(3):442–460, 1848. URL https://wellcomecollection.org/works/rdepqfzw.
- L. Rosenfeld. Quantenmechanische Theorie der natürlichen optischen Aktivität von Flüssigkeiten und Gasen. Z. Phys., 52(3):161–174, 1929. ISSN 0044-3328. doi: 10.1007/BF01342393. URL https://doi.org/10.1007/BF01342393.
- Specification of Molecular Chirality. Angew. Chem., Int. Ed. Engl., 5(4):385–415, 1966. ISSN 0570-0833. doi: 10.1002/anie.196603851. URL https://doi.org/10.1002/anie.196603851.
- M. J. Padgett and J. Courtial. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett., 24(7):430–432, 1999. ISSN 0146-9592. doi: 10.1364/ol.24.000430. URL https://doi.org/10.1364/ol.24.000430.
- Yijie Shen. Rays, waves, SU(2) symmetry and geometry: toolkits for structured light. J. Opt., 23(12):124004, 2021. ISSN 2040-8986. doi: 10.1088/2040-8986/ac3676. URL https://doi.org/10.1088/2040-8986/ac3676.
- Circular dichroism and linear dichroism, volume 1. Oxford University Press, USA, 1997.
- Gerald D Fasman. Circular dichroism and the conformational analysis of biomolecules. Springer Science & Business Media, 2013.
- P. J. Stephens. Theory of Magnetic Circular Dichroism. J. Chem. Phys., 52(7):3489–3516, 1970. ISSN 0021-9606. doi: 10.1063/1.1673514. URL https://doi.org/10.1063/1.1673514.
- Rayleigh and Raman optical activity from chiral surfaces. Chem. Phys. Lett., 225(4):525–530, 1994. ISSN 0009-2614. doi: 10.1016/0009-2614(94)87122-1. URL https://doi.org/10.1016/0009-2614(94)87122-1.
- Vibrational Circular Dichroism. Annu. Rev. Phys. Chem., 36(1):213–241, 1985. ISSN 0066-426X. doi: 10.1146/annurev.pc.36.100185.001241. URL https://doi.org/10.1146/annurev.pc.36.100185.001241.
- A new technique in the theory of angular distributions in atomic processes: the angular distribution of photoelectrons in single and double photoionization. J. Phys. B: At. Mol. Opt. Phys., 29(13):2711, 1996. ISSN 0953-4075. doi: 10.1088/0953-4075/29/13/010. URL https://doi.org/10.1088/0953-4075/29/13/010.
- Scattering matrix for chiral harmonic generation and frequency mixing in nonlinear metasurfaces. J. Opt., 26(5):055003, 2024. ISSN 2040-8986. doi: 10.1088/2040-8986/ad3a78. URL https://doi.org/10.1088/2040-8986/ad3a78.
- Second-harmonic generation circular-dichroism spectroscopy from chiral monolayers. Phys. Rev. B, 49(20):14643–14647, 1994. ISSN 2469-9969. doi: 10.1103/PhysRevB.49.14643. URL https://doi.org/10.1103/PhysRevB.49.14643.
- Perfect intrinsic and nonlinear chirality simultaneously driven by half-integer topological charge. Phys. Rev. B, 109(16):165420, 2024. ISSN 2469-9969. doi: 10.1103/PhysRevB.109.165420. URL https://doi.org/10.1103/PhysRevB.109.165420.
- Circular dichroism in higher-order harmonic generation: Heralding topological phases and transitions in Chern insulators. Phys. Rev. B, 102(13):134115, 2020. ISSN 2469-9969. doi: 10.1103/PhysRevB.102.134115. URL https://doi.org/10.1103/PhysRevB.102.134115.
- Absolute nonlinear optical probes of surface chirality. J. Opt. A: Pure Appl. Opt., 11(3):034006, 2009. ISSN 1464-4258. doi: 10.1088/1464-4258/11/3/034006. URL https://doi.org/10.1088/1464-4258/11/3/034006.
- Second Harmonic Optical Circular Dichroism of Plasmonic Chiral Helicoid-III Nanoparticles. ACS Photonics, 9(3):784–792, 2022. doi: 10.1021/acsphotonics.1c00882. URL https://doi.org/10.1021/acsphotonics.1c00882.
- Optical vortex dichroism in chiral particles. Phys. Rev. A, 103(5):053515, 2021. ISSN 2469-9934. doi: 10.1103/PhysRevA.103.053515. URL https://doi.org/10.1103/PhysRevA.103.053515.
- Vortex circular dichroism: An experimental technique to assess the scalar/vectorial regime of diffraction. Open Research Europe, 2:142, 2022. URL https://doi.org/10.12688/openreseurope.14916.1.
- Topological circular dichroism for asymmetric converging light beams. Opt. Lasers Eng., 174:107936, 2024. ISSN 0143-8166. doi: 10.1016/j.optlaseng.2023.107936. URL https://doi.org/10.1016/j.optlaseng.2023.107936.
- Angular momentum-induced circular dichroism in non-chiral nanostructures. Nat. Commun., 5(4922):1–7, 2014. ISSN 2041-1723. doi: 10.1038/ncomms5922. URL https://doi.org/10.1038/ncomms5922.
- On optical vortex interactions with chiral matter. Opt. Commun., 237(1):133–139, 2004. ISSN 0030-4018. doi: 10.1016/j.optcom.2004.03.093. URL https://doi.org/10.1016/j.optcom.2004.03.093.
- Second-Harmonic Generation Imaging of Metal Nano-Objects with Cylindrical Vector Beams. Nano Lett., 12(6):3207–3212, 2012. ISSN 1530-6984. doi: 10.1021/nl301190x. URL https://doi.org/10.1021/nl301190x.
- Scattering matrix for chiral harmonic generation and frequency mixing in nonlinear metasurfaces. arXiv, 2023a. doi: 10.48550/arXiv.2311.03686. URL https://doi.org/10.48550/arXiv.2311.03686.
- Theory of Circular Dichroism of Nanomaterials Comprising Chiral Molecules and Nanocrystals: Plasmon Enhancement, Dipole Interactions, and Dielectric Effects. Nano Lett., 10(4):1374–1382, 2010. ISSN 1530-6984. doi: 10.1021/nl100010v. URL https://doi.org/10.1021/nl100010v.
- Giant intrinsic chiro-optical activity in planar dielectric nanostructures. Light Sci. Appl., 7(2):17158, 2018. ISSN 2047-7538. doi: 10.1038/lsa.2017.158. URL https://doi.org/10.1038/lsa.2017.158.
- Circular Dichroism Studies on Plasmonic Nanostructures. Small, 13(1):1601115, 2017. ISSN 1613-6810. doi: 10.1002/smll.201601115. URL https://doi.org/10.1002/smll.201601115.
- Separating the Material and Geometry Contribution to the Circular Dichroism of Chiral Objects Made from Chiral Media. arXiv, 2024. doi: 10.48550/arXiv.2401.06664. URL https://doi.org/10.48550/arXiv.2401.06664.
- Local versus bulk circular dichroism enhancement by achiral all-dielectric nanoresonators. Nanophotonics, 11(18):4287–4297, 2022. ISSN 2192-8614. doi: 10.1515/nanoph-2022-0293. URL https://doi.org/10.1515/nanoph-2022-0293.
- Nonlinear Circular Dichroism in Mie-Resonant Nanoparticle Dimers. Nano Lett., 21(10):4381–4387, May 2021. ISSN 1530-6984. doi: 10.1021/acs.nanolett.1c01025.
- Nonlinear circular dichroism in achiral dielectric nanoparticles. Phys. Rev. B, 107(4):L041405, 2023. ISSN 2469-9969. doi: 10.1103/PhysRevB.107.L041405. URL https://doi.org/10.1103/PhysRevB.107.L041405.
- Propagation of focused scalar and vector vortex beams in anisotropic media: A semi-analytical approach. arXiv, 2024. doi: 10.48550/arXiv.2402.04349. URL https://doi.org/10.48550/arXiv.2402.04349.
- Hermite-Bessel beams and the geometrical representation of nondiffracting beams with orbital angular momentum. Opt. Express, 14(11):4577–4582, 2006. ISSN 1094-4087. doi: 10.1364/OE.14.004577. URL https://doi.org/10.1364/OE.14.004577.
- Qiwen Zhan. Properties of circularly polarized vortex beams. Opt. Lett., 31(7):867–869, 2006. ISSN 1539-4794. doi: 10.1364/OL.31.000867. URL https://doi.org/10.1364/OL.31.000867.
- Helicity and angular momentum: A symmetry-based framework for the study of light-matter interactions. Phys. Rev. A, 86(4):042103, 2012. ISSN 2469-9934. doi: 10.1103/PhysRevA.86.042103. URL https://doi.org/10.1103/PhysRevA.86.042103.
- Quantum Electrodynamics. Interscience Publishers, Hoboken, NJ, USA, 1965. ISBN 978-0-47001848-4.
- Julius Adams Stratton. Electromagnetic Theory. 2015. ISBN 978-0-47013153-4. doi: 10.1002/9781119134640. URL https://doi.org/10.1002/9781119134640.
- Absorption and Scattering by a Sphere. John Wiley & Sons, Ltd, 1998. ISBN 978-3-52761815-6. doi: 10.1002/9783527618156.ch4. URL https://doi.org/10.1002/9783527618156.ch4.
- Introduction to electromagnetic scattering: tutorial. J. Opt. Soc. Am. A, JOSAA, 35(1):163–173, 2018. ISSN 1520-8532. doi: 10.1364/JOSAA.35.000163. URL https://doi.org/10.1364/JOSAA.35.000163.
- Gabriel Molina-Terriza. Determination of the total angular momentum of a paraxial beam. Phys. Rev. A, 78(5):053819, 2008. ISSN 2469-9934. doi: 10.1103/PhysRevA.78.053819. URL https://doi.org/10.1103/PhysRevA.78.053819.
- The polychromatic T-matrix. J. Quant. Spectrosc. Radiat. Transfer, 314:108853, 2024. ISSN 0022-4073. doi: 10.1016/j.jqsrt.2023.108853. URL https://doi.org/10.1016/j.jqsrt.2023.108853.
- Duality symmetry and Kerker conditions. Opt. Lett., 38(11):1857–1859, 2013. ISSN 1539-4794. doi: 10.1364/OL.38.001857. URL https://doi.org/10.1364/OL.38.001857.
- On the origin of the Kerker phenomena. arXiv, 2023. doi: 10.48550/arXiv.2306.12762. URL https://doi.org/10.48550/arXiv.2306.12762.
- Achiral, Helicity Preserving, and Resonant Structures for Enhanced Sensing of Chiral Molecules. ACS Photonics, 6(2):482–491, 2019. doi: 10.1021/acsphotonics.8b01454. URL https://doi.org/10.1021/acsphotonics.8b01454.
- Ivan Fernandez-Corbaton. Forward and backward helicity scattering coefficients for systems with discrete rotational symmetry. Opt. Express, 21(24):29885–29893, 2013. ISSN 1094-4087. doi: 10.1364/OE.21.029885. URL https://doi.org/10.1364/OE.21.029885.
- Robert Boyd. Nonlinear Optics. Academic Press, Cambridge, MA, USA, Dec 2002. ISBN 978-0-12121682-5. URL https://www.elsevier.com/books/nonlinear-optics/boyd/978-0-12-121682-5.
- Generation of even and odd high harmonics in resonant metasurfaces using single and multiple ultra-intense laser pulses. Nat. Commun., 12(4185):1–6, 2021. ISSN 2041-1723. doi: 10.1038/s41467-021-24450-9. URL https://doi.org/10.1038/s41467-021-24450-9.
- L. Novotny and B. Hecht. Principles of Nano-Optics. Cambridge University Press, USA, 2006.
- Resonant-state expansion applied to three-dimensional open optical systems. Phys. Rev. A, 90(1):013834, 2014. ISSN 2469-9934. doi: 10.1103/PhysRevA.90.013834. URL https://doi.org/10.1103/PhysRevA.90.013834.
- Light Interaction with Photonic and Plasmonic Resonances. Laser Photonics Rev., 12(5):1700113, May 2018. ISSN 1863-8880. doi: 10.1002/lpor.201700113.
- Quasinormal-Mode Non-Hermitian Modeling and Design in Nonlinear Nano-Optics. ACS Photonics, 7(5):1197–1205, May 2020. doi: 10.1021/acsphotonics.0c00014.
- Understanding the physics related to the spatial exponential growth of electromagnetic quasinormal modes. arXiv, 2024. doi: 10.48550/arXiv.2401.15112. URL https://doi.org/10.48550/arXiv.2401.15112.
- Bound states in the continuum and Fano resonances in the strong mode coupling regime. In Advanced Photonics, Vol. 1, Issue 1, volume 1, page 016001. SPIE, 2019. doi: 10.1117/1.AP.1.1.016001. URL https://doi.org/10.1117/1.AP.1.1.016001.
- Multipolar theory of bianisotropic response of meta-atoms. Phys. Rev. B, 107(4):L041304, 2023. ISSN 2469-9969. doi: 10.1103/PhysRevB.107.L041304. URL https://doi.org/10.1103/PhysRevB.107.L041304.
- Probing Molecular Chirality by Orbital-Angular-Momentum-Carrying X-ray Pulses. J. Chem. Theory Comput., 15(7):4180–4186, 2019. ISSN 1549-9618. doi: 10.1021/acs.jctc.9b00346. URL https://doi.org/10.1021/acs.jctc.9b00346.
- Orbital angular momentum of twisted light: chirality and optical activity. J. Phys.: Photonics, 3(2):022007, 2021. ISSN 2515-7647. doi: 10.1088/2515-7647/abdb06. URL https://doi.org/10.1088/2515-7647/abdb06.
- Resonant Chiral Effects in Nonlinear Dielectric Metasurfaces. ACS Photonics, 10(1):298–306, 2023b. doi: 10.1021/acsphotonics.2c01926. URL https://doi.org/10.1021/acsphotonics.2c01926.
- Giant Nonlinear Optical Activity of Achiral Origin in Planar Metasurfaces with Quadratic and Cubic Nonlinearities. Adv. Mater., 28(15):2992–2999, 2016. ISSN 0935-9648. doi: 10.1002/adma.201505640. URL https://doi.org/10.1002/adma.201505640.
- Nonlinearity-Induced Optical Torque. Phys. Rev. Lett., 130(24):243802, 2023. ISSN 1079-7114. doi: 10.1103/PhysRevLett.130.243802. URL https://doi.org/10.1103/PhysRevLett.130.243802.
- Fast Simulation of Light Scattering and Harmonic Generation in Axially Symmetric Structures in COMSOL. ACS Photonics, 2024, 2024. doi: 10.1021/acsphotonics.3c01166. URL https://doi.org/10.1021/acsphotonics.3c01166.
- On the constraints of electromagnetic multipoles for symmetric scatterers: eigenmode analysis. Opt. Express, 28(3):3073–3085, 2020. ISSN 1094-4087. doi: 10.1364/OE.382239. URL https://doi.org/10.1364/OE.382239.
- Symmetry analysis and multipole classification of eigenmodes in electromagnetic resonators for engineering their optical properties. Phys. Rev. B, 102(7):075103, 2020. ISSN 2469-9969. doi: 10.1103/PhysRevB.102.075103. URL https://doi.org/10.1103/PhysRevB.102.075103.
- Quantum Mechanics: Non-Relativistic Theory. Course of Theoretical Physics. Elsevier Science, 1981. ISBN 9780080503486. URL https://books.google.ru/books?id=SvdoN3k8EysC.
- Engineering of the Second-Harmonic Emission Directionality with III–V Semiconductor Rod Nanoantennas. Laser Photonics Rev., 14(9):2000028, 2020. ISSN 1863-8880. doi: 10.1002/lpor.202000028. URL https://doi.org/10.1002/lpor.202000028.
- Gerald R. Meredith. Cascading in optical third-harmonic generation by crystalline quartz. Phys. Rev. B, 24(10):5522–5532, 1981. ISSN 2469-9969. doi: 10.1103/PhysRevB.24.5522. URL https://doi.org/10.1103/PhysRevB.24.5522.
- High-harmonic generation from a subwavelength dielectric resonator. Sci. Adv., 9(17), 2023. ISSN 2375-2548. doi: 10.1126/sciadv.adg2655. URL https://doi.org/10.1126/sciadv.adg2655.
- Evidence of Cascaded Third-Harmonic Generation in Noncentrosymmetric Gold Nanoantennas. Nano Lett., 19(10):7013–7020, 2019. ISSN 1530-6984. doi: 10.1021/acs.nanolett.9b02427. URL https://doi.org/10.1021/acs.nanolett.9b02427.
- All-optical polarization and amplitude modulation of second-harmonic generation in atomically thin semiconductors. Nat. Photonics, 15(11):837–842, 2021. ISSN 1749-4893. doi: 10.1038/s41566-021-00859-y. URL https://doi.org/10.1038/s41566-021-00859-y.
- Nonlinear spin-orbit coupling in optical thin films. Nat. Commun., 15(1625):1–8, 2024. ISSN 2041-1723. doi: 10.1038/s41467-024-45607-2. URL https://doi.org/10.1038/s41467-024-45607-2.
- The Theory of Intermolecular Forces. Oxford University Press, Oxford, England, UK, 2013. ISBN 978-0-19967239-4.
- A comparative analysis of surface and bulk contributions to second-harmonic generation in centrosymmetric nanoparticles. Sci. Rep., 8(3586):1–9, 2018. ISSN 2045-2322. doi: 10.1038/s41598-018-21850-8. URL https://doi.org/10.1038/s41598-018-21850-8.
- Nanophotonic Platforms for Enhanced Chiral Sensing. ACS Photonics, 5(7):2669–2675, 2018. doi: 10.1021/acsphotonics.8b00270. URL https://doi.org/10.1021/acsphotonics.8b00270.
- Aluminum Nanoparticles with Hot Spots for Plasmon-Induced Circular Dichroism of Chiral Molecules in the UV Spectral Interval. Adv. Opt. Mater., 5(16):1700069, 2017. ISSN 2195-1071. doi: 10.1002/adom.201700069. URL https://doi.org/10.1002/adom.201700069.
- Enhanced Chiral Sensing with Dielectric Nanoresonators. Nano Lett., 20(1):585–591, 2020. ISSN 1530-6984. doi: 10.1021/acs.nanolett.9b04334. URL https://doi.org/10.1021/acs.nanolett.9b04334.
- High harmonic generation in condensed matter. Nat. Photonics, 16(6):411–421, 2022. ISSN 1749-4893. doi: 10.1038/s41566-022-00988-y. URL https://doi.org/10.1038/s41566-022-00988-y.
- Theoretical Analysis of High-Harmonic Generation in Solids. Phys. Rev. Lett., 113(7):073901, 2014. ISSN 1079-7114. doi: 10.1103/PhysRevLett.113.073901. URL https://doi.org/10.1103/PhysRevLett.113.073901.
- High-Harmonic Generation from Resonant Dielectric Metasurfaces Empowered by Bound States in the Continuum. ACS Photonics, 9(2):567–574, 2022. doi: 10.1021/acsphotonics.1c01511. URL https://doi.org/10.1021/acsphotonics.1c01511.
- Anisotropic high-harmonic generation in bulk crystals. Nat. Phys., 13(4):345–349, 2017. ISSN 1745-2481. doi: 10.1038/nphys3955. URL https://doi.org/10.1038/nphys3955.
- Orbital perspective on high-harmonic generation from solids. Nat. Commun., 14(8421):1–6, 2023. ISSN 2041-1723. doi: 10.1038/s41467-023-44041-0. URL https://doi.org/10.1038/s41467-023-44041-0.
- kuyzirf. Calculation of Nonlinearity Tensor Chi3 in Cylindrical Coordinates. https://github.com/kuyzirf/Chi3-in-cylindrical-coordinates/tree/main, 2024.
- On the transformations generated by the electromagnetic spin and orbital angular momentum operators. J. Opt. Soc. Am. B, JOSAB, 31(9):2136–2141, 2014. ISSN 1520-8540. doi: 10.1364/JOSAB.31.002136. URL https://doi.org/10.1364/JOSAB.31.002136.
- Ivan Fernandez-Corbaton. Helicity and Duality Symmetry in Light Matter Interactions: Theory and Applications. Optica Publishing Group, page LM1H.2, 2015. doi: 10.1364/LS.2015.LM1H.2. URL https://doi.org/10.1364/LS.2015.LM1H.2.
- Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phys., 15(3):033026, 2013. ISSN 1367-2630. doi: 10.1088/1367-2630/15/3/033026. URL https://doi.org/10.1088/1367-2630/15/3/033026.
- H. Hopf. Vektorfelder in n-dimensionalen-Mannigfaltigkeiten. Math. Ann., 96:225–250, 1927. URL https://eudml.org/doc/159166.
- H. Poincaré. Mémoire sur les courbes définies par une équation. J. Math. Pures Appl., 7:375–422, 1881. ISSN 0021-7874. URL https://eudml.org/doc/235914.
- Heinz Hopf. Differential Geometry in the Large. Springer, Berlin, Germany, 1989. ISBN 978-3-540-39482-2. URL https://link.springer.com/book/10.1007/3-540-39482-6.
- Singularities and Poincar\’e Indices of Electromagnetic Multipoles. Phys. Rev. Lett., 122(15):153907, 2019. ISSN 1079-7114. doi: 10.1103/PhysRevLett.122.153907. URL https://doi.org/10.1103/PhysRevLett.122.153907.
- Merging bound states in the continuum by harnessing higher-order topological charges. Light Sci. Appl., 11(228):1–9, 2022. ISSN 2047-7538. doi: 10.1038/s41377-022-00923-4. URL https://doi.org/10.1038/s41377-022-00923-4.
- Character table for point group C3v, 2024. URL http://symmetry.jacobs-university.de/cgi-bin/group.cgi?group=403&option=4. [Online; accessed 29. Jan. 2024].
- Addition theorem for the spherical vector wave functions and its application to the beam shape coefficients. J. Opt. Soc. Am. B, JOSAB, 25(2):255–260, 2008. ISSN 1520-8540. doi: 10.1364/JOSAB.25.000255. URL https://doi.org/10.1364/JOSAB.25.000255.
- Seymour Stein. Addition theorems for spherical wave functions. Quarterly of Applied Mathematics, 19(1):15–24, 1961. ISSN 0033569X, 15524485. URL http://www.jstor.org/stable/43634833.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.