Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Combined Learning and Optimization Framework to Transfer Human Whole-body Loco-manipulation Skills to Mobile Manipulators (2402.13915v1)

Published 21 Feb 2024 in cs.RO

Abstract: Humans' ability to smoothly switch between locomotion and manipulation is a remarkable feature of sensorimotor coordination. Leaning and replication of such human-like strategies can lead to the development of more sophisticated robots capable of performing complex whole-body tasks in real-world environments. To this end, this paper proposes a combined learning and optimization framework for transferring human's loco-manipulation soft-switching skills to mobile manipulators. The methodology departs from data collection of human demonstrations for a locomotion-integrated manipulation task through a vision system. Next, the wrist and pelvis motions are mapped to mobile manipulators' End-Effector (EE) and mobile base. A kernelized movement primitive algorithm learns the wrist and pelvis trajectories and generalizes to new desired points according to task requirements. Next, the reference trajectories are sent to a hierarchical quadratic programming controller, where the EE and the mobile base reference trajectories are provided as the first and second priority tasks, generating the feasible and optimal joint level commands. A locomotion-integrated pick-and-place task is executed to validate the proposed approach. After a human demonstrates the task, a mobile manipulator executes the task with the same and new settings, grasping a bottle at non-zero velocity. The results showed that the proposed approach successfully transfers the human loco-manipulation skills to mobile manipulators, even with different geometry.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. M. A. Roa, M. R. Dogar, J. Pages, C. Vivas, A. Morales, N. Correll, M. Gorner, J. Rosell, S. Foix, R. Memmesheimer et al., “Mobile manipulation hackathon: Moving into real world applications,” IEEE Robotics & Automation Magazine, vol. 28, no. 2, pp. 112–124, 2021.
  2. J. Zhao, A. Giammarino, E. Lamon, J. M. Gandarias, E. D. Momi, and A. Ajoudani, “A hybrid learning and optimization framework to achieve physically interactive tasks with mobile manipulators,” IEEE Robotics and Automation Letters, vol. 7, pp. 8036–8043, 7 2022.
  3. T. Sandakalum and M. H. Ang Jr, “Motion planning for mobile manipulators—a systematic review,” Machines, vol. 10, no. 2, p. 97, 2022.
  4. N. Castaman, E. Pagello, E. Menegatti, and A. Pretto, “Receding horizon task and motion planning in changing environments,” Robotics and Autonomous Systems, vol. 145, p. 103863, 2021.
  5. N. Vahrenkamp, T. Asfour, and R. Dillmann, “Robot placement based on reachability inversion,” in 2013 IEEE International Conference on Robotics and Automation.   IEEE, 2013, pp. 1970–1975.
  6. S. Jauhri, J. Peters, and G. Chalvatzaki, “Robot learning of mobile manipulation with reachability behavior priors,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 8399–8406, 2022.
  7. S. Zimmermann, R. Poranne, and S. Coros, “Go fetch!-dynamic grasps using boston dynamics spot with external robotic arm,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 4488–4494.
  8. D. Honerkamp, T. Welschehold, and A. Valada, “Learning kinematic feasibility for mobile manipulation through deep reinforcement learning,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6289–6296, 2021.
  9. P. Ferrari, M. Cognetti, and G. Oriolo, “Humanoid whole-body planning for loco-manipulation tasks,” in 2017 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2017, pp. 4741–4746.
  10. B. Burgess-Limerick, C. Lehnert, J. Leitner, and P. Corke, “An architecture for reactive mobile manipulation on-the-move,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 1623–1629.
  11. A. Mészáros, G. Franzese, and J. Kober, “Learning to pick at non-zero-velocity from interactive demonstrations,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6052–6059, 2022.
  12. J. Zhao, G. J. Lahr, F. Tassi, A. Santopaolo, E. De Momi, and A. Ajoudani, “Impact-friendly object catching at non-zero velocity based on combined optimization and learning,” in 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2023, pp. 4428–4435.
  13. T. Welschehold, C. Dornhege, and W. Burgard, “Learning mobile manipulation actions from human demonstrations,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 3196–3201.
  14. Y. Wu, E. Lamon, F. Zhao, W. Kim, and A. Ajoudani, “Unified approach for hybrid motion control of moca based on weighted whole-body cartesian impedance formulation,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 3505–3512, 2021.
  15. F. Tassi, F. Iodice, E. De Momi, and A. Ajoudani, “Sociable and ergonomic human-robot collaboration through action recognition and augmented hierarchical quadratic programming,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 10 712–10 719.
  16. Y. Huang, L. Rozo, J. Silvério, and D. G. Caldwell, “Kernelized movement primitives,” The International Journal of Robotics Research, vol. 38, no. 7, pp. 833–852, 2019.
  17. F. Tassi, E. De Momi, and A. Ajoudani, “Augmented hierarchical quadratic programming for adaptive compliance robot control,” in 2021 IEEE international conference on robotics and automation (ICRA).   IEEE, 2021, pp. 3568–3574.
  18. O. Kanoun, F. Lamiraux, and P.-B. Wieber, “Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task,” IEEE Transactions on Robotics, vol. 27, no. 4, pp. 785–792, 2011.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jianzhuang Zhao (4 papers)
  2. Francesco Tassi (5 papers)
  3. Yanlong Huang (14 papers)
  4. Elena De Momi (40 papers)
  5. Arash Ajoudani (63 papers)

Summary

We haven't generated a summary for this paper yet.