Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extrapolated Shock Tracking: Bridging shock-fitting and embedded boundary methods (2402.13681v1)

Published 21 Feb 2024 in math.NA and cs.NA

Abstract: We propose a novel approach to approximate numerically shock waves. The method combines the unstructured shock-fitting approach developed in the last decade by some of the authors, with ideas coming from embedded boundary techniques. The numerical method obtained allows avoiding the re-meshing phase required by the unstructured fitting method, while guaranteeing accuracy properties very close to those of the fitting approach. This new method has many similarities with front tracking approaches, and paves the way to shock-tracking techniques truly independent on the data and mesh structure used by the flow solver. The approach is tested on several problems showing accuracy properties very close to those of more expensive fitting methods, with a considerable gain in flexibility and generality.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (45)
  1. doi:10.2514/6.2011-3686.
  2. doi:10.1002/fld.1650180603.
  3. doi:https://doi.org/10.2514/6.1974-10.
  4. doi:10.1007/BF01556453.
  5. doi:10.2514/6.1995-2159.
  6. doi:10.1016/j.jcp.2011.08.001.
  7. doi:10.1016/j.compfluid.2008.07.007.
  8. doi:10.1016/j.jcp.2011.01.018.
  9. doi:10.1016/j.compfluid.2012.12.022.
  10. doi:10.1002/fld.4183.
  11. doi:10.1007/s00193-010-0266-y.
  12. doi:10.1016/j.jcp.2017.05.047.
  13. doi:10.1007/s00193-019-00913-3.
  14. doi:10.1016/0021-9991(72)90065-4.
  15. doi:10.1016/S0045-7949(02)00404-2.
  16. doi:10.1016/j.jcp.2013.08.052.
  17. doi:10.1016/j.cma.2016.01.009.
  18. doi:10.1016/S0045-7825(02)00524-8.
  19. doi:10.1016/j.crma.2010.10.006.
  20. doi:10.1051/m2an/2013123.
  21. doi:10.1006/jcph.1999.6236.
  22. doi:10.1016/j.jcp.2008.04.032.
  23. doi:10.1016/j.jcp.2017.10.026.
  24. doi:10.1016/j.jcp.2018.01.023.
  25. doi:10.1016/j.jcp.2018.04.052.
  26. doi:https://doi.org/10.1016/bs.hna.2016.07.004.
  27. doi:10.1002/nme.6231.
  28. doi:10.1016/j.cpc.2015.06.005.
  29. doi:https://doi.org/10.1016/j.jcp.2019.109196.
  30. doi:10.1016/j.jcp.2019.108898.
  31. doi:{10.1016/j.jcp.2020.109385}.
  32. doi:10.1002/fld.4697.
  33. doi:10.1080/10618560008940713.
  34. doi:10.1002/0470091355.ecm054.
  35. doi:10.1002/9781119176817.ecm2112.
  36. doi:10.1080/10618562.2013.813491.
  37. doi:10.1006/jcph.1997.5705.
  38. doi:10.2514/1.J052567.
  39. doi:10.1115/1.4002985.
  40. doi:10.1007/BFb0014497.
  41. doi:https://doi.org/10.1007/BFb0014497.
  42. doi:https://doi.org/10.2514/6.2011-2288.
  43. doi:https://doi.org/10.1016/j.jcp.2018.06.043.
  44. doi:10.1002/fld.1650170305.
  45. doi:https://doi.org/10.2514/6.1998-774.
Citations (13)

Summary

We haven't generated a summary for this paper yet.