Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimisation of design parameters to improve performance of a planar electromagnetic actuator (2402.13436v1)

Published 21 Feb 2024 in physics.app-ph, cs.SY, and eess.SY

Abstract: Planar electromagnetic actuators based on the principle of linear motors are widely employed for micro and nano positioning applications. These actuators usually employ a planar magnetic platform driven by a co-planar electromagnetic coil. While these actuators offer a large motion range and high positioning resolution, their actuation bandwidth is limited due to relatively small electromagnetic stiffness. We report optimization of the design parameters of the electromagnetic coil and the magnetic assembly to maximize the electromagnetic force and stiffness. Firstly, we derive closed-form expressions for the electromagnetic forces and stiffness, which enable us to express these quantities in terms of the design parameters of the actuator. Secondly, based on these derived expressions, we estimate the optimum values of the design parameters to maximize force and stiffness. Notably, for the optimum design parameters, the force and stiffness per unit volume can be increased by two and three orders of magnitude, respectively by reducing the pitch of the electromagnetic coil by a factor of 10. Lastly, we develop an electromagnetic actuator and evaluate its performance using a Microelectromechanical system (MEMS) based force sensor. By operating the force sensor in a feedback loop, we precisely measure the generated electromagnetic forces for different design parameters of the actuator. The experimental results obtained align closely with the analytical values, with an error of less than 15%.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. B. Bilgin, J. Liang, M. V. Terzic, J. Dong, R. Rodriguez, E. Trickett, and A. Emadi, “Modeling and analysis of electric motors: State-of-the-art review,” IEEE Transactions on Transportation Electrification, vol. 5, no. 3, pp. 602–617, 2019.
  2. I. Boldea, “Linear electromagnetic actuators and their control: A review,” EPE Journal, vol. 14, no. 1, pp. 43–50, 2004.
  3. R. Saidur, “A review on electrical motors energy use and energy savings,” Renewable and sustainable energy reviews, vol. 14, no. 3, pp. 877–898, 2010.
  4. M. Yildirim, M. Polat, and H. Kürüm, “A survey on comparison of electric motor types and drives used for electric vehicles,” in 2014 16th International Power Electronics and Motion Control Conference and Exposition, pp. 218–223, 2014.
  5. S. T. Smith and R. M. Seugling, “Sensor and actuator considerations for precision, small machines,” Precision engineering, vol. 30, no. 3, pp. 245–264, 2006.
  6. M. Sitti, “Microscale and nanoscale robotics systems [grand challenges of robotics],” IEEE Robotics & Automation Magazine, vol. 14, no. 1, pp. 53–60, 2007.
  7. D. J. Bell, T. Lu, N. A. Fleck, and S. M. Spearing, “Mems actuators and sensors: observations on their performance and selection for purpose,” Journal of micromechanics and microengineering, vol. 15, no. 7, p. S153, 2005.
  8. D. Niarchos, “Magnetic mems: key issues and some applications,” Sensors and Actuators A: Physical, vol. 109, no. 1-2, pp. 166–173, 2003.
  9. T. Liakopoulos and C. Ahn, “3-d microfabricated toroidal planar inductors with different magnetic core schemes for mems and power electronic applications,” IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 3679–3681, 1999.
  10. D. Ahn, Y.-M. Choi, and J. Jeong, “Design of a four-degree-of-freedom nano positioner utilizing electromagnetic actuators and flexure mechanisms,” Review of Scientific Instruments, vol. 86, no. 3, 2015.
  11. F. Ehle, T. Boedrich, O. R. R. Rodriguez, and J. Lienig, “Moving-magnet actuator with flexure guide for precise positioning,” in Innovative Small Drives and Micro-Motor Systems; 9. GMM/ETG Symposium, pp. 1–6, VDE, 2013.
  12. C. Pawashe, S. Floyd, and M. Sitti, “Modeling and experimental characterization of an untethered magnetic micro-robot,” The International Journal of Robotics Research, vol. 28, no. 8, pp. 1077–1094, 2009.
  13. H. Uvet, A. A. Demircali, Y. Kahraman, R. Varol, T. Kose, and K. Erkan, “Micro-ufo (untethered floating object): A highly accurate microrobot manipulation technique,” Micromachines, vol. 9, no. 3, p. 126, 2018.
  14. L. Zhou and J. Wu, “Magnetic levitation technology for precision motion systems: A review and future perspectives,” International Journal of Automation Technology, vol. 16, no. 4, pp. 386–402, 2022.
  15. T. Kohlmeier, V. Seidemann, S. Büttgenbach, and H. Gatzen, “An investigation on technologies to fabricate microcoils for miniaturized actuator systems,” Microsystem technologies, vol. 10, no. 3, pp. 175–181, 2004.
  16. R. S. M. Mrinalini and G. Jayanth, “Design and evaluation of an active micro-scale ball and socket joint,” Journal of Microelectromechanical Systems, vol. 26, no. 4, pp. 886–894, 2017.
  17. M. Narendra, B. Arya, and G. Jayanth, “An electromagnetically actuated ball and socket joint for applications in 3d metrology,” Journal of Micromechanics and Microengineering, vol. 33, no. 1, p. 014003, 2022.
  18. W. Jing, S. Chowdhury, M. Guix, J. Wang, Z. An, B. V. Johnson, and D. J. Cappelleri, “A microforce-sensing mobile microrobot for automated micromanipulation tasks,” IEEE Transactions on Automation Science and Engineering, vol. 16, no. 2, pp. 518–530, 2018.
  19. C. Zhi, T. Shinshi, M. Saito, and K. Kato, “Planar-type micro-electromagnetic actuators using patterned thin film permanent magnets and mesh type coils,” Sensors and Actuators A: Physical, vol. 220, pp. 365–372, 2014.
  20. Y. Wang, C. Zhi, B. Tang, K. Yang, J. Xie, W. Xu, H. Li, and X. Wang, “A micro electromagnetic actuator with high force density,” Sensors and Actuators A: Physical, vol. 331, p. 112771, 2021.
  21. T. Lisec, M. T. Bodduluri, A.-V. Schulz-Walsemann, L. Blohm, I. Pieper, S. Gu-Stoppel, F. Niekiel, F. Lofink, and B. Wagner, “Integrated high power micro magnets for mems sensors and actuators,” in 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), pp. 1768–1771, 2019.
  22. A. Waldschik and S. Büttgenbach, “Micro gear pump with internal electromagnetic drive,” Microsystem Technologies, vol. 16, pp. 1581–1587, 2010.
  23. R. Luharuka, S. LeBlanc, J. S. Bintoro, Y. H. Berthelot, and P. J. Hesketh, “Simulated and experimental dynamic response characterization of an electromagnetic microvalve,” Sensors and Actuators A: Physical, vol. 143, no. 2, pp. 399–408, 2008.
  24. Y. Wang, J. Xie, F. Zhang, F. Tao, Z. Xiong, and C. Zhi, “A bi-stable mechanism actuated by patterned permanent magnet and cu-ni integrated micro-coil,” Journal of Micromechanics and Microengineering, vol. 32, no. 3, p. 035005, 2022.
  25. P. Punyabrahma, R. Bathe, and G. Jayanth, “Micro-ring based manipulation of magnetized particles,” Review of Scientific Instruments, vol. 93, no. 4, 2022.
  26. B. V. Johnson, N. Esantsi, and D. J. Cappelleri, “Design of the μ𝜇\muitalic_μmaze platform and microrobots for independent control and micromanipulation tasks,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 5677–5684, 2020.
  27. M. U. Khan, N. Bencheikh, C. Prelle, F. Lamarque, T. Beutel, and S. Buttgenbach, “A long stroke electromagnetic x⁢y𝑥𝑦xyitalic_x italic_y positioning stage for micro applications,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 5, pp. 866–875, 2011.
  28. M. Khan, E. Dupont, H. Al-Hajjar, C. Mattar, C. Prelle, and F. Lamarque, “A micro coordinate measuring machine using an active stereovision technique for measuring 3d micro parts,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 8648–8653, 2017.
  29. K. Vikrant and G. Jayanth, “Diamagnetically levitated nanopositioners with large-range and multiple degrees of freedom,” Nature Communications, vol. 13, no. 1, p. 3334, 2022.
  30. A. Hsu, C. Cowan, W. Chu, B. McCoy, A. Wong-Foy, R. Pelrine, C. Velez, D. Arnold, J. Lake, J. Ballard, et al., “Automated 2d micro-assembly using diamagnetically levitated milli-robots,” in 2017 international conference on manipulation, automation and robotics at small scales (MARSS), pp. 1–6, IEEE, 2017.
  31. K. Vikrant, H. M. Nasrabadi, and S. O. R. Moheimani, “A novel actuator based on near-field acoustic levitation and electromagnetic actuation,” in 2023 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pp. 1–6, IEEE, 2023.
  32. A. Hsu, A. Wong-Foy, and R. Pelrine, “Ferrofluid levitated micro/milli-robots,” in 2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pp. 1–7, IEEE, 2018.
  33. M. Maroufi, H. Alemansour, M. B. Coskun, and S. O. R. Moheimani, “An adjustable-stiffness mems force sensor: Design, characterization, and control,” Mechatronics, vol. 56, pp. 198–210, 2018.
  34. D. Dadkhah and S. R. Moheimani, “Combining h∞\infty∞ and resonant control to enable high-bandwidth measurements with a mems force sensor,” Mechatronics, vol. 96, p. 103086, 2023.

Summary

We haven't generated a summary for this paper yet.