Papers
Topics
Authors
Recent
2000 character limit reached

Regular Languages in the Sliding Window Model

Published 20 Feb 2024 in cs.FL | (2402.13385v2)

Abstract: We study the space complexity of the following problem: For a fixed regular language $L$, we receive a stream of symbols and want to test membership of a sliding window of size $n$ in $L$. For deterministic streaming algorithms we prove a trichotomy theorem, namely that the (optimal) space complexity is either constant, logarithmic or linear, measured in the window size $n$. Additionally, we provide natural language-theoretic characterizations of the space classes. We then extend the results to randomized streaming algorithms and we show that in this setting, the space complexity of any regular language is either constant, doubly logarithmic, logarithmic or linear. Finally, we introduce sliding window testers, which can distinguish whether a sliding window of size $n$ belongs to the language $L$ or has Hamming distance $> \epsilon n$ to $L$. We prove that every regular language has a deterministic (resp., randomized) sliding window tester that requires only logarithmic (resp., constant) space.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.