Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized sliding window algorithms for regular languages (1802.07600v1)

Published 21 Feb 2018 in cs.FL and cs.DS

Abstract: A sliding window algorithm receives a stream of symbols and has to output at each time instant a certain value which only depends on the last $n$ symbols. If the algorithm is randomized, then at each time instant it produces an incorrect output with probability at most $\epsilon$, which is a constant error bound. This work proposes a more relaxed definition of correctness which is parameterized by the error bound $\epsilon$ and the failure ratio $\phi$: A randomized sliding window algorithm is required to err with probability at most $\epsilon$ at a portion of $1-\phi$ of all time instants of an input stream. This work continues the investigation of sliding window algorithms for regular languages. In previous works a trichotomy theorem was shown for deterministic algorithms: the optimal space complexity is either constant, logarithmic or linear in the window size. The main results of this paper concerns three natural settings (randomized algorithms with failure ratio zero and randomized/deterministic algorithms with bounded failure ratio) and provide natural language theoretic characterizations of the space complexity classes.

Citations (11)

Summary

We haven't generated a summary for this paper yet.