Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Disorder-free Sachdev-Ye-Kitaev models: Integrability and a precursor of chaos (2402.13154v4)

Published 20 Feb 2024 in cond-mat.str-el, cond-mat.stat-mech, hep-th, and quant-ph

Abstract: We introduce two disorder-free variants of the Sachdev-Ye-Kitaev (SYK) model, demonstrate their integrability, and study their static and dynamical properties. Unlike diagrammatic techniques, the integrability of these models allows us to obtain dynamical correlation functions even when the number of Majorana fermions is finite. From the solutions, we find that out-of-time-order correlators (OTOCs) in these models exhibit exponential growth at early times, resembling that of quantum chaotic systems, such as those with disorder or external kick terms, despite their large $N$ behavior differing from that of typical chaotic systems. Conversely, our analysis shows no evidence of random-matrix behavior in level statistics or the spectral form factor. Our findings illustrate that the clean versions of the SYK models represent simple but nontrivial examples of disorder-free quantum many-body systems displaying chaos-like behavior of OTOCs.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (37)
  1. J. M. Deutsch, Eigenstate thermalization hypothesis, Rep. Prog. Phys. 81, 082001 (2018).
  2. H. Liu and J. Sonner, Quantum many-body physics from a gravitational lens, Nat. Rev. Phys. 2, 615 (2020).
  3. M. Serbyn, D. A. Abanin, and Z. Papić, Quantum many-body scars and weak breaking of ergodicity, Nat. Phys. 17, 675 (2021).
  4. S. Moudgalya, N. Regnault, and B. A. Bernevig, Quantum many-body scars and Hilbert space fragmentation: a review of exact results, Rep. Prog. Phys. 85, 086501 (2022).
  5. R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6, 15 (2015).
  6. F. Alet and N. Laflorencie, Many-body localization: An introduction and selected topics, C. R. Phys. 19, 498 (2018).
  7. P. Hayden and J. Preskill, Black holes as mirrors: quantum information in random subsystems, J. High Energ. Phys. 2007, 120 (2007).
  8. Y. Sekino and L. Susskind, Fast scramblers, J. High Energ. Phys. 2008, 065 (2008).
  9. S. H. Shenker and D. Stanford, Black holes and the butterfly effect, J. High Energ. Phys. 2014, 67 (2014).
  10. S. H. Shenker and D. Stanford, Stringy effects in scrambling, J. High Energ. Phys. 2015, 132 (2015).
  11. J. Maldacena, S. H. Shenker, and D. Stanford, A bound on chaos, J. High Energ. Phys. 2016, 106 (2016).
  12. S. Sachdev and J. Ye, Gapless spin-fluid ground state in a random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339 (1993).
  13. D. A. Trunin, Pedagogical introduction to the Sachdev–Ye–Kitaev model and two-dimensional dilaton gravity, Phys.-Usp. 64, 219 (2021).
  14. V. Rosenhaus, An introduction to the SYK model, J. Phys. A 52, 323001 (2019).
  15. J. Kudler-Flam, L. Nie, and S. Ryu, Conformal field theory and the web of quantum chaos diagnostics, J. High Energ. Phys. 2020, 175 (2020).
  16. S. W. McDonald and A. N. Kaufman, Spectrum and Eigenfunctions for a Hamiltonian with Stochastic Trajectories, Phys. Rev. Lett. 42, 1189 (1979).
  17. M. Berry, Quantizing a classically ergodic system: Sinai’s billiard and the KKR method, Ann. Phys. 131, 163 (1981).
  18. E. Dyer and G. Gur-Ari, 2D CFT partition functions at late times, Journal of High Energy Physics 2017, 75 (2017).
  19. A. I. Larkin and Y. N. Ovchinnikov, Quasiclassical method in the theory of superconductivity, Zh. Eksp. Teor. Fiz 55, 2262 (1969).
  20. J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-Ye-Kitaev model, J. High Energ. Phys. 2016, 1 (2016).
  21. J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev. D 94, 106002 (2016).
  22. E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Lyapunov exponent and out-of-time-ordered correlator’s growth rate in a chaotic system, Phys. Rev. Lett. 118, 086801 (2017).
  23. E. B. Rozenbaum, S. Ganeshan, and V. Galitski, Universal level statistics of the out-of-time-ordered operator, Phys. Rev. B 100, 035112 (2019).
  24. Y.-Z. You, A. W. W. Ludwig, and C. Xu, Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry-protected topological states, Phys. Rev. B 95, 115150 (2017).
  25. A. Kitaev and S. J. Suh, The soft mode in the Sachdev-Ye-Kitaev model and its gravity dual, J. High Energ. Phys. 2018, 183 (2018).
  26. T. Xu, T. Scaffidi, and X. Cao, Does scrambling equal chaos?, Phys. Rev. Lett. 124, 140602 (2020).
  27. E. Jaynes and F. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51, 89 (1963).
  28. Y. Hatsugai and M. Kohmoto, Exactly solvable model of correlated lattice electrons in any dimensions, J. Phys. Soc. Jpn. 61, 2056 (1992).
  29. See Supplementary Material.
  30. T. Guhr, A. Müller–Groeling, and H. A. Weidenmüller, Random-matrix theories in quantum physics: common concepts, Phys. Rep. 299, 189 (1998).
  31. S. Ozaki and H. Nakazato, Analytic approach to dynamics of the resonant and off-resonant Jaynes-Cummings systems with cavity losses, Phys. Rev. A 103, 053713 (2021).
  32. I. Kukuljan, S. Grozdanov, and T. Prosen, Weak quantum chaos,  .
  33. R. Prakash and A. Lakshminarayan, Scrambling in strongly chaotic weakly coupled bipartite systems: Universality beyond the Ehrenfest timescale, Phys. Rev. B 101, 121108 (2020).
  34. C.-J. Lin and O. I. Motrunich, Out-of-time-ordered correlators in a quantum Ising chain, Phys. Rev. B 97, 144304 (2018).
  35. J.-H. Bao and C.-Y. Zhang, Out-of-time-order correlators in the one-dimensional XY model, Commun. Theor. Phys. 72, 085103 (2020).
  36. E. Witten, An SYK-like model without disorder, J. Phys. A 52, 474002 (2019).
  37. C. Krishnan, K. Pavan Kumar, and D. Rosa, Contrasting SYK-like models, J. High Energ. Phys. 2018, 64 (2018).
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.