Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Statistical evaluation and optimization of entanglement purification protocols (2402.12287v2)

Published 19 Feb 2024 in quant-ph

Abstract: Quantitative characterization of two-qubit entanglement purification protocols is introduced. Our approach is based on the concurrence and the hit-and-run algorithm applied to the convex set of all two-qubit states. We demonstrate that pioneering protocols are unable to improve the estimated initial average concurrence of almost uniformly sampled density matrices, however, as it is known, they still generate pairs of qubits in a state that is close to a Bell state. We also develop a more efficient protocol and investigate it numerically together with a recent proposal based on an entangling rank-$2$ projector. Furthermore, we present a class of variational purification protocols with continuous parameters and optimize their output concurrence. These optimized algorithms turn out to surpass former proposals and our protocol by means of not wasting too many entangled states.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (23)
  1. W. Dür and H. J. Briegel, Rep. Prog. Phys. 70, 1381 (2007).
  2. S. J. Devitt, W. J. Munro, and K. Nemoto, Rep. Prog. Phys. 76, 076001 (2013).
  3. M. Horodecki, P. Horodecki, and R. Horodecki, Distillability of inseparable quantum systems (1996), arXiv:quant-ph/9607009 [quant-ph] .
  4. J. M. Torres and J. Z. Bernád, Phys. Rev. A 94, 052329 (2016).
  5. D. Wecker, M. B. Hastings, and M. Troyer, Phys. Rev. A 94, 022309 (2016).
  6. S. Krastanov, V. V. Albert, and L. Jiang, Optimized Entanglement Purification, Quantum 3, 123 (2019).
  7. P. B. Slater and C. F. Dunkl, J. Phys. A: Math. Theor. 45, 095305 (2012).
  8. S. Milz and W. T. Strunz, J. Phys. A: Math. Theor. 48, 035306 (2014).
  9. J. Fei and R. Joynt, Rep. Math. Phys. 78, 177 (2016).
  10. W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
  11. D. C. Liu and J. Nocedal, On the limited memory bfgs method for large scale optimization, Math. Program. 45, 503 (1989a).
  12. D. C. Liu and J. Nocedal, Math. Program. 45, 503 (1989b).
  13. T. Tilma, M. Byrd, and E. C. G. Sudarshan, J. Phys. A: Math. Theor. 35, 10445 (2002).
  14. R. F. Werner, Phys. Rev. A 40, 4277 (1989).
  15. C. Macchiavello, Phys. Lett. A 246, 385 (1998).
  16. R. A. Bertlmann and P. Krammer, J. Phys. A: Math. Theor. 41, 235303 (2008).
  17. G. Kimura, Phys. Lett. A 314, 339 (2003).
  18. R. L. Smith, Oper. Res. 32, 1296 (1984).
  19. L. Lovász, Math. Prog. 86, 443 (1999).
  20. L. Lovász and S. Vempala, SIAM J. Comput. 35, 985 (2006).
  21. K. Życzkowski and H.-J. Sommers, J. Phys. A: Math. Gen. 34, 7111 (2001).
  22. A. Sauer and J. Z. Bernád, Phys. Rev. A 106, 032423 (2022).
  23. V. Paulsen, Completely Bounded Maps and Operator Algebras (Cambridge University Press, Cambridge, 2003).
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com