Statistical evaluation and optimization of entanglement purification protocols (2402.12287v2)
Abstract: Quantitative characterization of two-qubit entanglement purification protocols is introduced. Our approach is based on the concurrence and the hit-and-run algorithm applied to the convex set of all two-qubit states. We demonstrate that pioneering protocols are unable to improve the estimated initial average concurrence of almost uniformly sampled density matrices, however, as it is known, they still generate pairs of qubits in a state that is close to a Bell state. We also develop a more efficient protocol and investigate it numerically together with a recent proposal based on an entangling rank-$2$ projector. Furthermore, we present a class of variational purification protocols with continuous parameters and optimize their output concurrence. These optimized algorithms turn out to surpass former proposals and our protocol by means of not wasting too many entangled states.
- W. Dür and H. J. Briegel, Rep. Prog. Phys. 70, 1381 (2007).
- S. J. Devitt, W. J. Munro, and K. Nemoto, Rep. Prog. Phys. 76, 076001 (2013).
- M. Horodecki, P. Horodecki, and R. Horodecki, Distillability of inseparable quantum systems (1996), arXiv:quant-ph/9607009 [quant-ph] .
- J. M. Torres and J. Z. Bernád, Phys. Rev. A 94, 052329 (2016).
- D. Wecker, M. B. Hastings, and M. Troyer, Phys. Rev. A 94, 022309 (2016).
- S. Krastanov, V. V. Albert, and L. Jiang, Optimized Entanglement Purification, Quantum 3, 123 (2019).
- P. B. Slater and C. F. Dunkl, J. Phys. A: Math. Theor. 45, 095305 (2012).
- S. Milz and W. T. Strunz, J. Phys. A: Math. Theor. 48, 035306 (2014).
- J. Fei and R. Joynt, Rep. Math. Phys. 78, 177 (2016).
- W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
- D. C. Liu and J. Nocedal, On the limited memory bfgs method for large scale optimization, Math. Program. 45, 503 (1989a).
- D. C. Liu and J. Nocedal, Math. Program. 45, 503 (1989b).
- T. Tilma, M. Byrd, and E. C. G. Sudarshan, J. Phys. A: Math. Theor. 35, 10445 (2002).
- R. F. Werner, Phys. Rev. A 40, 4277 (1989).
- C. Macchiavello, Phys. Lett. A 246, 385 (1998).
- R. A. Bertlmann and P. Krammer, J. Phys. A: Math. Theor. 41, 235303 (2008).
- G. Kimura, Phys. Lett. A 314, 339 (2003).
- R. L. Smith, Oper. Res. 32, 1296 (1984).
- L. Lovász, Math. Prog. 86, 443 (1999).
- L. Lovász and S. Vempala, SIAM J. Comput. 35, 985 (2006).
- K. Życzkowski and H.-J. Sommers, J. Phys. A: Math. Gen. 34, 7111 (2001).
- A. Sauer and J. Z. Bernád, Phys. Rev. A 106, 032423 (2022).
- V. Paulsen, Completely Bounded Maps and Operator Algebras (Cambridge University Press, Cambridge, 2003).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.