Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

M-ideals of compact operators and Norm attaining operators (2402.12070v1)

Published 19 Feb 2024 in math.FA

Abstract: We investigate M-ideals of compact operators and two distinct properties in norm-attaining operator theory related with M-ideals of compact operators called the weak maximizing property and the compact perturbation property. For Banach spaces $X$ and $Y$, it is previously known that if $\mathcal{K}(X,Y)$ is an M-ideal or $(X,Y)$ has the weak maximizing property, then $(X,Y)$ has the adjoint compact perturbation property. We see that their converses are not true, and the condition that $\mathcal{K}(X,Y)$ is an M-ideal does not imply the weak maximizing property, nor vice versa. Nevertheless, we see that all of these are closely related to property $(M)$, and as a consequence, we show that if $\mathcal{K}(\ell_p,Y)$ $(1<p<\infty)$ is an M-ideal, then $(\ell_p,Y)$ has the weak maximizing property. We also prove that $(\ell_1,\ell_1)$ does not have the adjoint compact perturbation property, and neither does $(\ell_1,Y)$ for an infinite dimensional Banach space $Y$ without an isomorphic copy of $\ell_1$ if $Y$ does not have the local diameter 2 property. As a consequence, we show that if $Y$ is an infinite dimensional Banach space such that $\mathcal{L}(\ell_1,Y)$ is an M-ideal, then it has the local diameter 2 property. Furthermore, we also studied various geometric properties of Banach spaces such as the Opial property with moduli of asymptotic uniform smoothness and uniform convexity.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube