MM-SurvNet: Deep Learning-Based Survival Risk Stratification in Breast Cancer Through Multimodal Data Fusion (2402.11788v1)
Abstract: Survival risk stratification is an important step in clinical decision making for breast cancer management. We propose a novel deep learning approach for this purpose by integrating histopathological imaging, genetic and clinical data. It employs vision transformers, specifically the MaxViT model, for image feature extraction, and self-attention to capture intricate image relationships at the patient level. A dual cross-attention mechanism fuses these features with genetic data, while clinical data is incorporated at the final layer to enhance predictive accuracy. Experiments on the public TCGA-BRCA dataset show that our model, trained using the negative log likelihood loss function, can achieve superior performance with a mean C-index of 0.64, surpassing existing methods. This advancement facilitates tailored treatment strategies, potentially leading to improved patient outcomes.
- H. Lindman, F. Wiklund, and K. K. Andersen, “Long-term treatment patterns and survival in metastatic breast cancer by intrinsic subtypes—an observational cohort study in Sweden,” BMC Cancer, vol. 22, p. 1006, 2022.
- Y. Han, J. Wang, and B. Xu, “Clinicopathological characteristics and prognosis of breast cancer with special histological types: A surveillance, epidemiology, and end results database analysis,” The Breast, vol. 54, pp. 114–120, 2020.
- C. Shuai, F. Yuan, Y. Liu, C. Wang, J. Wang, and H. He, “Estrogen receptor—positive breast cancer survival prediction and analysis of resistance–related genes introduction,” PeerJ, vol. 9, p. e12202, 2021.
- X. Li, L. Liu, G. J. Goodall, A. W. Schreiber, T. Xu, J. Li, and T. D. Le, “A novel single-cell based method for breast cancer prognosis,” PLoS Computational Biology, vol. 16, p. e1008133, 2020.
- V. Subramanian, T. Syeda-Mahmood, and M. N. Do, “Multi-modality fusion using canonical correlation analysis methods: Application in breast cancer survival prediction from histology and genomics,” 11 2021.
- C. Nero, F. Ciccarone, A. Pietragalla, S. Duranti, G. Daniele, G. Scambia, and D. Lorusso, “Adjuvant treatment recommendations in early-stage endometrial cancer: What changes with the introduction of the integrated molecular-based risk assessment,” Frontiers in Oncology, vol. 11, p. 612450, 2021.
- W. Guo, W. Liang, Q. Deng, and X. Zou, “A multimodal affinity fusion network for predicting the survival of breast cancer patients,” Frontiers in Genetics, vol. 12, p. 709027, 2021.
- Y. B. Shvetsov, L. R. Wilkens, K. K. White, M. Chong, A. Buyum, G. Badowski, R. T. L. Guerrero, and R. Novotny, “Prediction of breast cancer risk among women of the Mariana Islands: The BRISK retrospective case—control study,” BMJ Open, vol. 12, p. e061205, 2022.
- K. Holli-Helenius, A. Salminen, I. Rinta-Kiikka, I. Koskivuo, N. Brück, P. Boström, and R. Parkkola, “MRI texture analysis in differentiating luminal A and luminal B breast cancer molecular subtypes—a feasibility study,” BMC Medical Imaging, vol. 17, p. 69, 2017.
- K. Yao, E. Schaafsma, B. Zhang, and C. Cheng, “Tumor cell intrinsic and extrinsic features predict prognosis in estrogen receptor positive breast cancer,” PLOS Computational Biology, vol. 18, pp. 1–22, 03 2022.
- S. C. Wetstein, V. M. d. Jong, N. Stathonikos, M. Opdam, G. M. H. E. Dackus, J. P. W. Pluim, P. J. v. Diest, and M. Veta, “Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images,” Scientific Reports, vol. 12, 2022.
- T. Wei, X. Yuan, R. Gao, L. J. Johnston, J. Zhou, Y. Wang, W. Kong, Y. Xie, Y. Zhang, D. Xu, and Z. Yu, “Survival prediction of stomach cancer using expression data and deep learning models with histopathological images,” Cancer Science, vol. 114, pp. 690–701, 2022.
- L. Chen, H. Zeng, X. Yu, Y. Huang, Y. Luo, and X. Ma, “Histopathological images and multi-omics integration predict molecular characteristics and survival in lung adenocarcinoma,” Frontiers in Cell and Developmental Biology, vol. 9, 2021.
- X. Wu, Y. Shi, M. Wang, and A. Li, “CAMR: cross-aligned multimodal representation learning for cancer survival prediction,” Bioinformatics, vol. 39, p. btad025, 2023.
- Y. He, B. Hu, C. Zhu, W. Xu, X. Hao, B. Dong, X. Chen, Q. Dong, and X. Zhou, “A novel multimodal radiomics model for predicting prognosis of resected hepatocellular carcinoma,” Frontiers in Oncology, vol. 12, p. 745258, 2022.
- V. Subramanian, T. Syeda-Mahmood, and M. N. Do, “Multimodal fusion using sparse CCA for breast cancer survival prediction,” IEEE International Symposium on Biomedical Imaging, pp. 1429–1432, 2021.
- R. Vanguri, J. Luo, A. Aukerman, J. V. Egger, C. J. Fong, N. Horvat, A. Pagano, J. d. A. B. Araújo-Filho, L. Geneslaw, H. Rizvi, R. E. Sosa, K. M. Boehm, S. Yang, F. M. Bodd, K. Ventura, T. J. Hollmann, M. S. Ginsberg, J. Gao, M. D. Hellmann, J. L. Sauter, and S. P. Shah, “Multimodal integration of radiology, pathology and genomics for prediction of response to PD-(L)1 blockade in patients with non-small cell lung cancer,” Nature Cancer, vol. 3, no. 10, pp. 1151–1164, 2022.
- W. Lingle, B. J. Erickson, M. L. Zuley, R. Jarosz, E. Bonaccio, J. Filippini, J. M. Net, L. Levi, E. A. Morris, G. G. Figler, P. Elnajjar, S. Kirk, Y. Lee, M. Giger, and N. Gruszauskas, “The cancer genome atlas breast invasive carcinoma collection (TCGA-BRCA),” The Cancer Imaging Archive, 2016.
- P. Bankhead, M. B. Loughrey, J. A. Fernández, Y. Dombrowski, D. G. McArt, P. D. Dunne, S. McQuaid, R. T. Gray, L. J. Murray, H. G. Coleman, J. A. James, M. Salto-Tellez, and P. W. Hamilton, “QuPath: Open source software for digital pathology image analysis,” Scientific Reports, vol. 7, p. 16878, 2017.
- M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley, X. Guan, C. Schmitt, and N. E. Thomas, “A method for normalizing histology slides for quantitative analysis,” IEEE International Symposium on Biomedical Imaging (ISBI), pp. 1107–1110, 2009.
- B. Li and C. N. Dewey, “RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome,” BMC Bioinformatics, vol. 12, p. 323, 2011.
- J. S. Parker, M. E. Mullins, M. C. Cheang, S. Leung, V. David, T. L. Vickery, S. R. Davies, C. Fauron, X. He, Z. Hu, J. Quackenbush, I. J. Stijleman, J. Palazzo, J. S. Marron, A. B. Nobel, E. R. Mardis, T. O. Nielsen, M. J. Ellis, C. M. Perou, and P. S. Bernard, “Supervised risk predictor of breast cancer based on intrinsic subtypes,” Journal of Clinical Oncology, vol. 27, pp. 1160–1167, 2009.
- Z. Tu, H. Talebi, H. Zhang, F. Yang, P. Milanfar, A. Bovik, and Y. Li, “MaxViT: Multi-axis vision transformer,” European Conference on Computer Vision (ECCV), p. 459–479, 2022.
- A. D. Jones, J. P. Graff, M. A. Darrow, A. D. Borowsky, K. Olson, R. Gandour-Edwards, A. Mitra, D. Wei, G. Gao, B. Durbin-Johnson, and H. H. Rashidi, “Impact of pre-analytical variables on deep learning accuracy in histopathology,” Histopathology, vol. 75, pp. 39–53, 2019.
- I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” International Conference on Learning Representations (ICLR), 2019.
- E. Longato, M. Vettoretti, and B. Di Camillo, “A practical perspective on the concordance index for the evaluation and selection of prognostic time-to-event models,” Journal of Biomedical Informatics, vol. 108, p. 103496, 2020.
- K. J. Jager, P. C. van Dijk, C. Zoccali, and F. W. Dekker, “The analysis of survival data: The Kaplan–Meier method,” Kidney International, vol. 74, no. 5, pp. 560–565, 2008.