Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Q-Embroidery: A Study on Weaving Quantum Error Correction into the Fabric of Quantum Classifiers (2402.11127v3)

Published 16 Feb 2024 in quant-ph and cs.ET

Abstract: Quantum computing holds transformative potential for various fields, yet its practical application is hindered by the susceptibility to errors. This study makes a pioneering contribution by applying quantum error correction codes (QECCs) for complex, multi-qubit classification tasks. We implement 1-qubit and 2-qubit quantum classifiers with QECCs, specifically the Steane code, and the distance 3 & 5 surface codes to analyze 2-dimensional and 4-dimensional datasets. This research uniquely evaluates the performance of these QECCs in enhancing the robustness and accuracy of quantum classifiers against various physical errors, including bit-flip, phase-flip, and depolarizing errors. The results emphasize that the effectiveness of a QECC in practical scenarios depends on various factors, including qubit availability, desired accuracy, and the specific types and levels of physical errors, rather than solely on theoretical superiority.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (17)
  1. Jacob Biamonte et al. 2017. Quantum machine learning. Nature 549, 7671 (2017), 195–202.
  2. A Robert Calderbank et al. 1996. Good quantum error-correcting codes exist. Physical Review A 54, 2 (1996), 1098.
  3. Quantum Error Correction For Dummies. arXiv preprint arXiv:2304.08678 (2023).
  4. Daniel Gottesman. 1997. Stabilizer codes and quantum error correction. California Institute of Technology.
  5. Thomas Grurl et al. 2023. Automatic Implementation and Evaluation of Error-Correcting Codes for Quantum Computing: An Open-Source Framework for Quantum Error Correction. In 2023 36th International Conference on VLSI Design and 2023 22nd International Conference on Embedded Systems (VLSID). IEEE, 301–306.
  6. Akshaya Jayashankar et al. 2023. Quantum error correction: Noise-adapted techniques and applications. Journal of the Indian Institute of Science 103, 2 (2023), 497–512.
  7. Sebastian Krinner et al. 2022. Realizing repeated quantum error correction in a distance-three surface code. Nature 605, 7911 (2022), 669–674.
  8. Weikang Li et al. 2022. Recent advances for quantum classifiers. Science China Physics, Mechanics & Astronomy 65, 2 (2022), 220301.
  9. Ashley Montanaro. 2016. Quantum algorithms: an overview. npj Quantum Information 2, 1 (2016), 1–8.
  10. Michael A Nielsen et al. 2010. Quantum computation and quantum information. Cambridge university press.
  11. Koustubh Phalak et al. 2024. Non-parametric Greedy Optimization of Parametric Quantum Circuits. arXiv preprint arXiv:2401.15442; https://github.com/KoustubhPhalak/Greedy-PQC-Optimization (2024).
  12. John Preskill. 1998. Reliable quantum computers. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454, 1969 (1998), 385–410.
  13. An introduction to quantum machine learning. Contemporary Physics 56, 2 (2015), 172–185.
  14. Peter W Shor. 1995. Scheme for reducing decoherence in quantum computer memory. Physical review A 52, 4 (1995), R2493.
  15. Andrew Steane. 1996. Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 452, 1954 (1996), 2551–2577.
  16. Barbara M Terhal. 2015. Quantum error correction for quantum memories. Reviews of Modern Physics 87, 2 (2015), 307.
  17. William K Wootters et al. 1982. A single quantum cannot be cloned. Nature 299, 5886 (1982), 802–803.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com