Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Magic Mirror on the Wall, How to Benchmark Quantum Error Correction Codes, Overall ? (2402.11105v4)

Published 16 Feb 2024 in quant-ph and cs.ET

Abstract: Quantum Error Correction Codes (QECCs) are pivotal in advancing quantum computing by protecting quantum states against the adverse effects of noise and errors. With a variety of QECCs developed, including new developments and modifications of existing ones, selecting an appropriate QECC tailored to specific conditions is crucial. Despite significant improvements in the field of QECCs, a unified methodology for evaluating them on a consistent basis has remained elusive. Addressing this gap, this paper presents the first benchmarking framework for QECCs, introducing a set of universal parameters. By evaluating eight prominent QECCs, we propose a comprehensive suite of eight parameters for their analysis. Our methodology establishes a universal benchmarking approach and highlights the complexity of quantum error correction, indicating that the choice of a QECC depends on the unique requirements and limitations of each scenario. Furthermore, we develop a systematic strategy for selecting QECCs that adapts to the specific requirements of a given scenario, facilitating a tailored approach to quantum error correction. Additionally, we introduce a novel QECC recommendation tool that assesses the characteristics of a given scenario provided by the user, subsequently recommending a spectrum of QECCs from most to least suitable, along with the maximum achievable distance for each code. This tool is designed to be adaptable, allowing for the inclusion of new QECCs and the modification of their parameters with minimal effort, ensuring its relevance in the evolving landscape of quantum computing.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (83)
  1. Exponential suppression of bit or phase errors with cyclic error correction. Nature, 595(7867):383–387, 2021.
  2. Fault-tolerant operation of a logical qubit in a diamond quantum processor. Nature, 606(7916):884–889, 2022.
  3. Fault-tolerant quantum computation with constant error. In Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pages 176–188, 1997.
  4. Quantum computing for energy systems optimization: Challenges and opportunities. Energy, 179:76–89, 2019.
  5. Subsystem fault tolerance with the bacon-shor code. Physical review letters, 98(22):220502, 2007.
  6. Dave Bacon. Operator quantum error-correcting subsystems for self-correcting quantum memories. Physical Review A, 73(1):012340, 2006.
  7. Decoding quantum color codes with maxsat. arXiv preprint arXiv:2303.14237, 2023.
  8. Efficient machine-learning-based decoder for heavy hexagonal qecc. arXiv preprint arXiv:2210.09730, 2022.
  9. A quantum processor based on coherent transport of entangled atom arrays. Nature, 604(7906):451–456, 2022.
  10. Héctor Bombín. An introduction to topological quantum codes. arXiv preprint arXiv:1311.0277, 2013.
  11. Topological quantum distillation. Physical review letters, 97(18):180501, 2006.
  12. Efficient algorithms for maximum likelihood decoding in the surface code. Physical Review A, 90(3):032326, 2014.
  13. Good quantum error-correcting codes exist. Physical Review A, 54(2):1098, 1996.
  14. Triangular color codes on trivalent graphs with flag qubits. New Journal of Physics, 22(2):023019, 2020a.
  15. Topological and subsystem codes on low-degree graphs with flag qubits. Physical Review X, 10(1):011022, 2020b.
  16. Q-pandora unboxed: Characterizing noise resilience of quantum error correction codes. 2023a.
  17. Quantum error correction for dummies. arXiv preprint arXiv:2304.08678, 2023b.
  18. Realization of quantum error correction. Nature, 432(7017):602–605, 2004.
  19. Introduction to quantum noise, measurement, and amplification. Reviews of Modern Physics, 82(2):1155, 2010.
  20. Machine learning for continuous quantum error correction on superconducting qubits. New Journal of Physics, 24(6):063019, 2022.
  21. Almost-linear time decoding algorithm for topological codes. Quantum, 5:595, 2021.
  22. Topological quantum memory. Journal of Mathematical Physics, 43(9):4452–4505, 2002.
  23. Quantum error correction for beginners. Reports on Progress in Physics, 76(7):076001, 2013.
  24. DGBJ Dieks. Communication by epr devices. Physics Letters A, 92(6):271–272, 1982.
  25. Fast decoders for topological quantum codes. Physical review letters, 104(5):050504, 2010.
  26. Fault-tolerant operation of a quantum error-correction code. arXiv preprint arXiv:2009.11482, 2020.
  27. Austin G Fowler. Minimum weight perfect matching of fault-tolerant topological quantum error correction in average o⁢(1)𝑜1o(1)italic_o ( 1 ) parallel time. arXiv preprint arXiv:1307.1740, 2013.
  28. Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86(3):032324, 2012.
  29. Projective plane and planar quantum codes. Foundations of Computational Mathematics, 1:325–332, 2001.
  30. Quantum computing in supply chain management state of the art and research directions. Asian Journal of Logistics Management, 1(1):57–73, 2022.
  31. Craig Gidney. Stim: a fast stabilizer circuit simulator. Quantum, 5:497, 2021.
  32. Daniel Gottesman. Stabilizer codes and quantum error correction. California Institute of Technology, 1997.
  33. Richard W Hamming. Error detecting and error correcting codes. The Bell system technical journal, 29(2):147–160, 1950.
  34. James William Harrington. Analysis of quantum error-correcting codes: symplectic lattice codes and toric codes. California Institute of Technology, 2004.
  35. Fiber bundle codes: breaking the n 1/2 polylog (n) barrier for quantum ldpc codes. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1276–1288, 2021.
  36. Optimal circuit-level decoding for surface codes. arXiv preprint arXiv:1609.06373, 2016.
  37. Improved decoding of circuit noise and fragile boundaries of tailored surface codes. Physical Review X, 13(3):031007, 2023.
  38. Surface code quantum computing by lattice surgery. New Journal of Physics, 14(12):123011, 2012.
  39. Efficient markov chain monte carlo algorithm for the surface code. Physical Review A, 89(2):022326, 2014.
  40. A Yu Kitaev. Quantum computations: algorithms and error correction. Russian Mathematical Surveys, 52(6):1191, 1997.
  41. A Yu Kitaev. Fault-tolerant quantum computation by anyons. Annals of physics, 303(1):2–30, 2003.
  42. Realizing repeated quantum error correction in a distance-three surface code. Nature, 605(7911):669–674, 2022.
  43. Unfolding the color code. New Journal of Physics, 17(8):083026, 2015.
  44. Aleksander Marek Kubica. The ABCs of the color code: A study of topological quantum codes as toy models for fault-tolerant quantum computation and quantum phases of matter. PhD thesis, California Institute of Technology, 2018.
  45. Introduction to quantum computation and information. World Scientific, 1998.
  46. Quantum teleportation of physical qubits into logical code spaces. Proceedings of the National Academy of Sciences, 118(36):e2026250118, 2021.
  47. G Mouloudakis and P Lambropoulos. Entanglement instability in the interaction of two qubits with a common non-markovian environment. Quantum Information Processing, 20:1–15, 2021.
  48. Jonathan E Moussa. Transversal clifford gates on folded surface codes. Physical Review A, 94(4):042316, 2016.
  49. Diversities in Quantum Computation and Quantum Information, volume 5. World Scientific, 2012.
  50. Demonstration of shor encoding on a trapped-ion quantum computer. Physical Review Applied, 16(2):024057, 2021.
  51. Quantum computation and quantum information. Phys. Today, 54(2):60, 2001.
  52. Quantum computations on a topologically encoded qubit. Science, 345(6194):302–305, 2014.
  53. Generalized belief propagation algorithms for decoding of surface codes. Quantum, 7:1037, 2023.
  54. Quantum computing for finance: Overview and prospects. Reviews in Physics, 4:100028, 2019.
  55. Asher Peres. Reversible logic and quantum computers. Physical review A, 32(6):3266, 1985.
  56. John Preskill. Reliable quantum computers. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1969):385–410, 1998.
  57. Realization of three-qubit quantum error correction with superconducting circuits. Nature, 482(7385):382–385, 2012.
  58. Elucidating reaction mechanisms on quantum computers. Proceedings of the national academy of sciences, 114(29):7555–7560, 2017.
  59. Joschka Roffe. Quantum error correction: an introductory guide. Contemporary Physics, 60(3):226–245, 2019.
  60. A cellular automaton decoder for a noise-bias tailored color code. Quantum, 7:940, 2023.
  61. Albert T Schmitz. Thermal stability of dynamical phase transitions in higher dimensional stabilizer codes. arXiv preprint arXiv:2002.11733, 2020.
  62. An introduction to quantum machine learning. Contemporary Physics, 56(2):172–185, 2015.
  63. Probing topological spin liquids on a programmable quantum simulator. Science, 374(6572):1242–1247, 2021.
  64. Peter W Shor. Scheme for reducing decoherence in quantum computer memory. Physical review A, 52(4):R2493, 1995.
  65. Andrew Steane. Multiple-particle interference and quantum error correction. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 452(1954):2551–2577, 1996a.
  66. Andrew M Steane. Error correcting codes in quantum theory. Physical Review Letters, 77(5):793, 1996b.
  67. Ashley M Stephens. Efficient fault-tolerant decoding of topological color codes. arXiv preprint arXiv:1402.3037, 2014.
  68. Estimating the resources for quantum computation with the qure toolbox. EECS Department, University of California, Berkeley (accessed 2 October 2018) http://www2. eecs. berkeley. edu/Pubs/TechRpts/2013/EECS-2013-119. html, 2013.
  69. Matching and maximum likelihood decoding of a multi-round subsystem quantum error correction experiment. arXiv preprint arXiv:2203.07205, 2022.
  70. Demonstrating multi-round subsystem quantum error correction using matching and maximum likelihood decoders. Nature Communications, 14(1):2852, 2023.
  71. Scalable surface-code decoders with parallelization in time. PRX Quantum, 4(4):040344, 2023.
  72. Barbara M Terhal. Quantum error correction for quantum memories. Reviews of Modern Physics, 87(2):307, 2015.
  73. Yu Tomita and Krysta M Svore. Low-distance surface codes under realistic quantum noise. Physical Review A, 90(6):062320, 2014.
  74. Andrei L Toom. Nonergodic multidimensional system of automata. Problemy Peredachi Informatsii, 10(3):70–79, 1974.
  75. Neural decoder for topological codes. Physical review letters, 119(3):030501, 2017.
  76. John Von Neumann. Mathematical foundations of quantum mechanics: New edition, volume 53. Princeton university press, 2018.
  77. Quantum error correction in a solid-state hybrid spin register. Nature, 506(7487):204–207, 2014.
  78. A single quantum cannot be cloned. Nature, 299(5886):802–803, 1982.
  79. The no-cloning theorem. Physics Today, 62(2):76–77, 2009.
  80. Digital simulation of projective non-abelian anyons with 68 superconducting qubits. Chinese Physics Letters, 2023.
  81. Transversality versus universality for additive quantum codes. IEEE Transactions on Information Theory, 57(9):6272–6284, 2011.
  82. Experimental quantum error correction with high fidelity. Physical Review A, 84(3):034303, 2011.
  83. Methodology for quantum logic gate construction. Physical Review A, 62(5):052316, 2000.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com