Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kolmogorov n-Widths for Multitask Physics-Informed Machine Learning (PIML) Methods: Towards Robust Metrics (2402.11126v2)

Published 16 Feb 2024 in cs.LG and physics.comp-ph

Abstract: Physics-informed machine learning (PIML) as a means of solving partial differential equations (PDE) has garnered much attention in the Computational Science and Engineering (CS&E) world. This topic encompasses a broad array of methods and models aimed at solving a single or a collection of PDE problems, called multitask learning. PIML is characterized by the incorporation of physical laws into the training process of machine learning models in lieu of large data when solving PDE problems. Despite the overall success of this collection of methods, it remains incredibly difficult to analyze, benchmark, and generally compare one approach to another. Using Kolmogorov n-widths as a measure of effectiveness of approximating functions, we judiciously apply this metric in the comparison of various multitask PIML architectures. We compute lower accuracy bounds and analyze the model's learned basis functions on various PDE problems. This is the first objective metric for comparing multitask PIML architectures and helps remove uncertainty in model validation from selective sampling and overfitting. We also identify avenues of improvement for model architectures, such as the choice of activation function, which can drastically affect model generalization to "worst-case" scenarios, which is not observed when reporting task-specific errors. We also incorporate this metric into the optimization process through regularization, which improves the models' generalizability over the multitask PDE problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. doi:10.1038/s42254-021-00314-5. URL https://doi.org/10.1038/s42254-021-00314-5
  2. doi:10.1371/journal.pcbi.1007575. URL https://doi.org/10.1371/journal.pcbi.1007575
  3. doi:https://doi.org/10.1016/j.jcp.2020.109914. URL https://www.sciencedirect.com/science/article/pii/S0021999120306884
  4. doi:10.1364/OE.384875. URL https://opg.optica.org/oe/abstract.cfm?URI=oe-28-8-11618
  5. doi:10.3389/fphy.2020.00042. URL https://www.frontiersin.org/articles/10.3389/fphy.2020.00042
  6. doi:10.4208/cicp.OA-2020-0164.
  7. doi:https://doi.org/10.1016/j.cma.2020.113028. URL https://www.sciencedirect.com/science/article/pii/S0045782520302127
  8. doi:https://doi.org/10.1016/j.jcp.2023.111912. URL https://www.sciencedirect.com/science/article/pii/S0021999123000074
  9. doi:https://doi.org/10.1016/j.cma.2022.115810. URL https://www.sciencedirect.com/science/article/pii/S0045782522007666
  10. doi:https://doi.org/10.1016/j.jcp.2023.112464.
  11. doi:https://doi.org/10.1016/j.cma.2021.114474. URL https://www.sciencedirect.com/science/article/pii/S0045782521006939
  12. doi:https://doi.org/10.1016/j.jcp.2021.110768. URL https://www.sciencedirect.com/science/article/pii/S002199912100663X
  13. doi:https://doi.org/10.1016/j.jcp.2020.110079. URL https://www.sciencedirect.com/science/article/pii/S0021999120308536
  14. doi:10.1109/TNNLS.2021.3070878.
  15. doi:https://doi.org/10.1016/j.jcp.2019.05.024. URL https://www.sciencedirect.com/science/article/pii/S0021999119303559
  16. doi:https://doi.org/10.1016/j.jcp.2019.109056. URL https://www.sciencedirect.com/science/article/pii/S0021999119307612
  17. doi:https://doi.org/10.1016/j.cma.2021.114037. URL https://www.sciencedirect.com/science/article/pii/S0045782521003686
  18. doi:https://doi.org/10.1016/j.compstruc.2020.106458. URL https://www.sciencedirect.com/science/article/pii/S0045794920302613
  19. doi:https://doi.org/10.1016/j.cma.2020.113226. URL https://www.sciencedirect.com/science/article/pii/S0045782520304114
  20. doi:https://doi.org/10.1016/j.compind.2020.103386.
  21. doi:10.1109/72.392253.
  22. doi:https://doi.org/10.1016/j.cma.2009.01.021. URL https://www.sciencedirect.com/science/article/pii/S0045782509000280
  23. doi:https://doi.org/10.1016/j.neucom.2022.05.015. URL https://www.sciencedirect.com/science/article/pii/S092523122200546X
  24. doi:https://doi.org/10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.com/science/article/pii/0893608089900208

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com