Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 38 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 464 tok/s Pro
Kimi K2 166 tok/s Pro
2000 character limit reached

Soft Dice Confidence: A Near-Optimal Confidence Estimator for Selective Prediction in Semantic Segmentation (2402.10665v3)

Published 16 Feb 2024 in cs.LG and cs.CV

Abstract: Selective prediction augments a model with the option to abstain from providing unreliable predictions. The key ingredient is a confidence score function, which should be directly related to the conditional risk. In the case of binary semantic segmentation, existing score functions either ignore the particularities of the evaluation metric or demand additional held-out data for tuning. We propose the Soft Dice Confidence (SDC), a simple, tuning-free confidence score function that directly aligns with the Dice coefficient metric. We prove that, under conditional independence, the SDC is near optimal: we establish upper and lower bounds on the ratio between the SDC and the ideal (intractable) confidence score function and show that these bounds are very close to 1. Experiments on six public medical-imaging benchmarks and on synthetic data corroborate our theoretical findings. In fact, SDC outperformed all prior confidence estimators from the literature in all of our experiments, including those that rely on additional data. These results position SDC as a reliable and efficient confidence estimator for selective prediction in semantic segmentation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube