Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 478 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Random harmonic maps into spheres (2402.10287v2)

Published 15 Feb 2024 in math.DG, math.OA, and math.PR

Abstract: Let $S$ be a punctured Riemann surface with Euler characteristic $\chi(S)<0$. For any unitary representation $\rho: \pi_1(S) \to U(N)$, we introduce its renormalized energy and its harmonic representatives, which are equivariant harmonic maps from the universal cover of $S$ to the unit sphere in $\mathbb{C}N$. Our main result is that if a sequence of unitary representations $\rho_j$ strongly converges, then their renormalized energies converge to $\frac{\pi}{4}|\chi(S)|$ and the shape of their harmonic representatives converges to a unique rescaled hyperbolic metric. Combining this statement with examples of strongly converging representations provided by random matrix theory, we derive the following applications. (1) If $\pi_1(S)$ is a free group, then for a random $\rho: \pi_1(S) \to U(N)$, the shape of its harmonic representatives concentrates around a rescaled hyperbolic metric with high probability as $N\to \infty$. (2) For any closed hyperbolic surface, a finite covering admits a harmonic immersion into some Euclidean unit sphere, which is almost isometric after rescaling. (3) There are closed, branched, minimal surfaces $\mathfrak{S}j$ in some Euclidean unit spheres such that $\mathfrak{S}_j$ Benjamini-Schramm converges to a rescaled hyperbolic plane as $j\to \infty$, and the Gaussian curvature $K_j$ of $\mathfrak{S}_j$ satisfies $\lim{j\to \infty} \frac{1}{\mathrm{Area}(\mathfrak{S}j)}\int{\mathfrak{S}_j} |K_j+8|=0.$

Definition Search Book Streamline Icon: https://streamlinehq.com
References (80)
  1. Unimodular measures on the space of all riemannian manifolds. Geometry & Topology, 26(5):2295–2404, 2022.
  2. Eigenvalues of random lifts and polynomials of random permutation matrices. Annals of Mathematics, 190(3):811–875, 2019.
  3. Volume et entropie minimale des espaces localement symétriques. Invent. Math., 103(2):417–445, 1991.
  4. Entropies et rigidités des espaces localement symétriques de courbure strictement négative. Geom. Funct. Anal., 5(5):731–799, 1995.
  5. Inégalités de milnor–wood géométriques. Commentarii Mathematici Helvetici, 82(4):753–803, 2007.
  6. A survey on zeros of random holomorphic sections. arXiv preprint arXiv:1807.05390, 2018.
  7. Kazhdan’s property (t). Kazhdan’s property (T), 11, 2008.
  8. Higher Teichmüller spaces: from S⁢L⁢(2,ℝ)𝑆𝐿2ℝSL(2,\mathbb{R})italic_S italic_L ( 2 , blackboard_R ) to other lie groups. In Handbook of Teichmüller theory, Volume IV, volume 19, pages 539–618. European Mathematical Society, 2014.
  9. Simon Brendle. Minimal surfaces in S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT: a survey of recent results. Bulletin of Mathematical Sciences, 3(1):133–171, 2013.
  10. Robert L Bryant. Conformal and minimal immersions of compact surfaces into the 4-sphere. Journal of Differential Geometry, 17(3):455–473, 1982.
  11. Robert L Bryant. Submanifolds and special structures on the octonians. Journal of Differential Geometry, 17(2):185–232, 1982.
  12. Robert L Bryant. Minimal surfaces of constant curvature in Snsuperscript𝑆𝑛S^{n}italic_S start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT. Transactions of the American Mathematical Society, 290(1):259–271, 1985.
  13. Robert Bryant. Personal communication, 2024.
  14. Eugenio Calabi. Minimal immersions of surfaces in Euclidean spheres. Journal of Differential Geometry, 1(1-2):111–125, 1967.
  15. Minimal submanifolds of a sphere with second fundamental form of constant length. In Functional Analysis and Related Fields: Proceedings of a Conference in honor of Professor Marshall Stone, held at the University of Chicago, May 1968, pages 59–75. Springer, 1970.
  16. Bang-Yen Chen. Riemannian submanifolds. Handbook of differential geometry, 1:187–418, 2000.
  17. A course in minimal surfaces, volume 121. American Mathematical Soc., 2011.
  18. Counting minimal surfaces in negatively curved 3-manifolds. Duke Math. J, 171:1615–1648, 2022.
  19. Kevin Corlette. Rigid representations of kählerian fundamental groups. Journal of Differential Geometry, 33(1):239–252, 1991.
  20. New minimal surfaces in S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT desingularizing the Clifford tori. Mathematische Annalen, 364:763–776, 2015.
  21. Manfredo Perdigao Do Carmo and J Flaherty Francis. Riemannian geometry, volume 6. Springer, 1992.
  22. Pierre de La Harpe. On simplicity of reduced C*-algebras of groups. Bulletin of the London Mathematical Society, 39(1):1–26, 2007.
  23. Regularity theory for 2-dimensional almost minimal currents i: Lipschitz approximation. Transactions of the American Mathematical Society, 370(3):1783–1801, 2018.
  24. Residual properties of free groups and probabilistic methods. J. Reine Angew. Math., 556:159–172, 2003.
  25. Nathan M Dunfield. Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds. Inventiones mathematicae, 136(3):623–657, 1999.
  26. Riemannian manifolds admitting isometric immersions by their first eigenfunctions. Pacific Journal of Mathematics, 195(1):91–99, 2000.
  27. A primer on mapping class groups (pms-49), volume 41. Princeton university press, 2011.
  28. Stefano Francaviglia. Hyperbolic volume of representations of fundamental groups of cusped 3-manifolds. International Mathematics Research Notices, 2004(9):425–459, 2004.
  29. The weyl law for the phase transition spectrum and density of limit interfaces. Geometric and Functional Analysis, 29:382–410, 2019.
  30. Elliptic partial differential equations of second order, volume 224. Springer, 1977.
  31. Ursula Hamenstädt. Incompressible surfaces in rank one locally symmetric spaces. Geometric and Functional Analysis, 3(25):815–859, 2015.
  32. Jun-ichi Hano. Conformal immersions of compact Riemann surfaces into the 2⁢n2𝑛2n2 italic_n-sphere (n≥2)𝑛2(n\geq 2)( italic_n ≥ 2 ). Nagoya Mathematical Journal, 141:79–105, 1996.
  33. Philip Hartman. On homotopic harmonic maps. Canadian journal of mathematics, 19:673–687, 1967.
  34. Will Hide. Effective lower bounds for spectra of random covers and random unitary bundles. arXiv preprint arXiv:2305.04584, 2023.
  35. Near optimal spectral gaps for hyperbolic surfaces. Annals of Mathematics, 198(2):791–824, 2023.
  36. Prescribing curvature on open surfaces. Mathematische Annalen, 293:277–315, 1992.
  37. A new application of random matrices: is not a group. Annals of Mathematics, pages 711–775, 2005.
  38. Dominique Hulin. Kähler-Einstein metrics and projective embeddings. The Journal of Geometric Analysis, 10(3):525–528, 2000.
  39. Katsuei Kenmotsu. On minimal immersions of R2superscript𝑅2R^{2}italic_R start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT into SNsuperscript𝑆𝑁S^{N}italic_S start_POSTSUPERSCRIPT italic_N end_POSTSUPERSCRIPT. Journal of the Mathematical Society of Japan, 28(1):182–191, 1976.
  40. Immersing almost geodesic surfaces in a closed hyperbolic three manifold. Annals of Mathematics, pages 1127–1190, 2012.
  41. Geometrically and topologically random surfaces in a closed hyperbolic three manifold. arXiv preprint arXiv:2309.02847, 2023.
  42. New minimal surfaces in S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Journal of Differential Geometry, 28(2):169–185, 1988.
  43. Min-max harmonic maps and a new characterization of conformal eigenvalues. arXiv preprint arXiv:2004.04086, 2020.
  44. Minimal surfaces in the three-sphere by doubling the Clifford torus. American journal of mathematics, 132(2):257–295, 2010.
  45. François Labourie. Lectures on representations of surface groups. EMS publishing house, 2013.
  46. François Labourie. Cyclic surfaces and Hitchin components in rank 2. Annals of Mathematics, 185(1):1–58, 2017.
  47. Xingzhe Li. Generic scarring for minimal hypersurfaces in manifolds thick at infinity with a thin foliation at infinity. arXiv preprint arXiv:2312.03591, 2023.
  48. H Blaine Lawson Jr. Complete minimal surfaces in S3superscript𝑆3S^{3}italic_S start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT. Annals of Mathematics, pages 335–374, 1970.
  49. Strongly convergent unitary representations of limit groups. arXiv preprint arXiv:2210.08953, 2022.
  50. Minimal surface entropy and average area ratio. arXiv preprint arXiv:2110.09451, 2021.
  51. Alex Lubotzky. Discrete groups, expanding graphs and invariant measures, volume 125. Springer Science & Business Media, 1994.
  52. Equidistribution of minimal hypersurfaces for generic metrics. Inventiones mathematicae, 216(2):421–443, 2019.
  53. Jean-Paul Mohsen. Construction of negatively curved complete intersections. Duke Mathematical Journal, 171(9):1843–1878, 2022.
  54. Minimal immersions of surfaces by the first eigenfunctions and conformal area. Inventiones mathematicae, 83:153–166, 1986.
  55. Handle attachment and the normalized first eigenvalue. arXiv preprint arXiv:1909.03105, 2019.
  56. Nikolai Nadirashvili. Hadamard’s and calabi-yau’s conjectures on negatively curved and minimal surfaces. Inventiones mathematicae, 126(3):457–466, 1996.
  57. Conformal spectrum and harmonic maps. Moscow Mathematical Journal, 15(1):123–140, 2015.
  58. Jorge Vitório Pereira. Geometry of complex elliptic curves. MathOverflow. URL:https://mathoverflow.net/q/68963 (version: 2011-06-28).
  59. Romain Petrides. Existence and regularity of maximal metrics for the first Laplace eigenvalue on surfaces. Geometric and Functional Analysis, 24(4):1336–1376, 2014.
  60. Robert T Powers. Simplicity of the C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebra associated with the free group on two generators. 1975.
  61. Eigenvalues and entropy of a Hitchin representation. Inventiones mathematicae, 209(3):885–925, 2017.
  62. Alexander G Reznikov. Harmonic maps, hyperbolic cohomology and higher Milnor inequalities. 1992.
  63. Antonio Ros. On the first eigenvalue of the Laplacian on compact surfaces of genus three. Journal of the Mathematical Society of Japan, 74(3):813–828, 2022.
  64. T Steger and M Cowling. The irreducibility of restrictions of unitary representations of lattices. 1991.
  65. James Simons. Minimal varieties in Riemannian manifolds. Annals of Mathematics, pages 62–105, 1968.
  66. Antoine Song. Entropy and stability of hyperbolic manifolds. 2023. arXiv:2302.07422 v2 [math.DG].
  67. Antoine Song. Metric currents, barycenter maps and the spherical Plateau problem. arXiv preprint, 2023.
  68. Antoine Song. Hyperbolic groups and spherical minimal surfaces. arXiv preprint, 2024.
  69. The existence of minimal immersions of 2-spheres. Annals of mathematics, pages 1–24, 1981.
  70. Minimal immersions of closed riemann surfaces. Transactions of the American Mathematical Society, 271(2):639–652, 1982.
  71. Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature. Annals of Mathematics, 110(1):127–142, 1979.
  72. Lectures on harmonic maps. 1997.
  73. Generic scarring for minimal hypersurfaces along stable hypersurfaces. Geometric and Functional Analysis, 31(4):948–980, 2021.
  74. Stochastic Kähler geometry: from random zeros to random metrics. arXiv preprint arXiv:2303.11559, 2023.
  75. Tsunero Takahashi. Minimal immersions of Riemannian manifolds. Journal of the Mathematical Society of Japan, 18(4):380–385, 1966.
  76. Gang Tian. On a set of polarized Kähler metrics on algebraic manifolds. Journal of Differential Geometry, 32(1):99–130, 1990.
  77. Domingo Toledo. Representations of surface groups in complex hyperbolic space. Journal of Differential Geometry, 29(1):125–133, 1989.
  78. Nolan B Wallach. Extension of locally defined minimal immersions into spheres. Archiv der Mathematik, 21:210–213, 1970.
  79. Shing-Tung Yau. Seminar on differential geometry. Number 102. Princeton University Press, 1982.
  80. Masoud Zargar. Random flat bundles and equidistribution. arXiv preprint arXiv:2210.09547, 2022.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com