Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Revisiting Stochastic Realization Theory using Functional Itô Calculus (2402.10157v1)

Published 15 Feb 2024 in math.OC, cs.SY, eess.SY, and math.PR

Abstract: This paper considers the problem of constructing finite-dimensional state space realizations for stochastic processes that can be represented as the outputs of a certain type of a causal system driven by a continuous semimartingale input process. The main assumption is that the output process is infinitely differentiable, where the notion of differentiability comes from the functional It^o calculus introduced by Dupire as a causal (nonanticipative) counterpart to Malliavin's stochastic calculus of variations. The proposed approach builds on the ideas of Hijab, who had considered the case of processes driven by a Brownian motion, and makes contact with the realization theory of deterministic systems based on formal power series and Chen-Fliess functional expansions.

Summary

We haven't generated a summary for this paper yet.