Strebel differentials and string field theory (2402.09641v2)
Abstract: A closed string worldsheet of genus $g$ with $n$ punctures can be presented as a contact interaction in which $n$ semi-infinite cylinders are glued together in a specific way via the Strebel differential on it, if $n\geq1,\ 2g-2+n>0$. We construct a string field theory of closed strings such that all the Feynman diagrams are represented by such contact interactions. In order to do so, we define off-shell amplitudes in the underlying string theory using the combinatorial Fenchel-Nielsen coordinates to describe the moduli space and derive a recursion relation satisfied by them. Utilizing the Fokker-Planck formalism, we construct a string field theory from which the recursion relation can be deduced through the Schwinger-Dyson equation. The Fokker-Planck Hamiltonian consists of kinetic terms and three string interaction terms.
- K. Strebel, Quadratic differentials. Springer, 1984.
- M. Saadi and B. Zwiebach, “Closed string field theory from polyhedra,” Annals Phys. 192 (1989) 213.
- T. Kugo, H. Kunitomo, and K. Suehiro, “Nonpolynomial closed string field theory,” Phys. Lett. B 226 (1989) 48–54.
- T. Kugo and K. Suehiro, “Nonpolynomial closed string field theory: Action and its gauge invariance,” Nucl. Phys. B 337 (1990) 434–466.
- B. Zwiebach, “Consistency of closed string polyhedra from minimal area,” Phys. Lett. B 241 (1990) 343–349.
- B. Zwiebach, “How covariant closed string theory solves a minimal area problem,” Commun. Math. Phys. 136 (1991) 83–118.
- B. Zwiebach, “Closed string field theory: Quantum action and the Batalin-Vilkovisky master equation,” Nucl. Phys. B 390 (1993) 33–152, arXiv:hep-th/9206084.
- S. F. Moosavian and R. Pius, “Hyperbolic geometry and closed bosonic string field theory. part I. the string vertices via hyperbolic Riemann surfaces,” JHEP 08 (2019) 157, arXiv:1706.07366 [hep-th].
- S. F. Moosavian and R. Pius, “Hyperbolic geometry and closed bosonic string field theory. part II. the rules for evaluating the quantum BV master action,” JHEP 08 (2019) 177, arXiv:1708.04977 [hep-th].
- K. Costello and B. Zwiebach, “Hyperbolic string vertices,” JHEP 02 (2022) 002, arXiv:1909.00033 [hep-th].
- N. Ishibashi, “The Fokker-Planck formalism for closed bosonic strings,” PTEP 2023 (2023) no. 2, 023B05, arXiv:2210.04134 [hep-th].
- M. Mirzakhani, “Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces,” Invent. Math. 167 (2006) no. 1, 179–222.
- M. Mirzakhani, “Weil-Petersson volumes and intersection theory on the moduli space of curves,” J. Am. Math. Soc. 20 (2007) no. 01, 1–24.
- J. Bennett, D. Cochran, B. Safnuk, and K. Woskoff, “Topological recursion for symplectic volumes of moduli spaces of curves,” Michigan Mathematical Journal 61 (2012) no. 2, 331–358.
- J. E. Andersen, G. Borot, S. Charbonnier, A. Giacchetto, D. Lewański, and C. Wheeler, “On the Kontsevich geometry of the combinatorial Teichmüller space,” arXiv preprint arXiv:2010.11806 (2020) .
- M. Kontsevich, “Intersection theory on the moduli space of curves and the matrix Airy function,” Communications in Mathematical Physics 147 (1992) 1–23.
- A. H. Fırat, “Hyperbolic three-string vertex,” JHEP 08 (2021) 035, arXiv:2102.03936 [hep-th].
- A. H. Fırat, “Bootstrapping closed string field theory,” JHEP 05 (2023) 186, arXiv:2302.12843 [hep-th].
- G. Mondello, “Riemann surfaces with boundary and natural triangulations of the Teichmüller space,” Journal of the European Mathematical Society 13 (2011) no. 3, 635–684.
- G. Mondello, “Triangulated Riemann surfaces with boundary and the Weil-Petersson Poisson structure,” Journal of Differential Geometry 81 (2009) no. 2, 391–436.
- N. Do, “The asymptotic Weil-Petersson form and intersection theory on ℳ¯g,nsubscript¯ℳ𝑔𝑛\overline{\mathcal{M}}_{g,n}over¯ start_ARG caligraphic_M end_ARG start_POSTSUBSCRIPT italic_g , italic_n end_POSTSUBSCRIPT,” arXiv preprint arXiv:1010.4126 (2010) .
- E. Witten, “Noncommutative geometry and string field theory,” Nucl. Phys. B 268 (1986) 253–294.
- W. P. Thurston, “On the geometry and dynamics of diffeomorphisms of surfaces,” Bulletin of the American mathematical society 19 (1988) no. 2, 417–431.
- Princeton University Press, 2021.
- R. C. Penner and J. L. Harer, Combinatorics of train tracks. No. 125. Princeton University Press, 1992.
- A. Sen, “Off-shell amplitudes in superstring theory,” Fortsch. Phys. 63 (2015) 149–188, arXiv:1408.0571 [hep-th].
- C. de Lacroix, H. Erbin, S. P. Kashyap, A. Sen, and M. Verma, “Closed superstring field theory and its applications,” Int. J. Mod. Phys. A 32 (2017) no. 28n29, 1730021, arXiv:1703.06410 [hep-th].
- T. Erler, “Four lectures on closed string field theory,” Phys. Rept. 851 (2020) 1–36, arXiv:1905.06785 [hep-th].
- 3, 2021.
- G. McShane, “A remarkable identity for lengths of curves,” Ph. D. thesis, University of Warwick (1991) .
- N. Ishibashi and H. Kawai, “String field theory of noncritical strings,” Phys. Lett. B 314 (1993) 190–196, arXiv:hep-th/9307045.
- A. Jevicki and J. P. Rodrigues, “Loop space Hamiltonians and field theory of noncritical strings,” Nucl. Phys. B 421 (1994) 278–292, arXiv:hep-th/9312118.
- N. Ishibashi and H. Kawai, “String field theory of c≤1𝑐1c\leq 1italic_c ≤ 1 noncritical strings,” Phys. Lett. B 322 (1994) 67–78, arXiv:hep-th/9312047.
- M. Ikehara, N. Ishibashi, H. Kawai, T. Mogami, R. Nakayama, and N. Sasakura, “String field theory in the temporal gauge,” Phys. Rev. D 50 (1994) 7467–7478, arXiv:hep-th/9406207.
- M. Ikehara, N. Ishibashi, H. Kawai, T. Mogami, R. Nakayama, and N. Sasakura, “A note on string field theory in the temporal gauge,” Prog. Theor. Phys. Suppl. 118 (1995) 241–258, arXiv:hep-th/9409101.
- A. Sen, “Reality of superstring field theory action,” JHEP 11 (2016) 014, arXiv:1606.03455 [hep-th].
- R. Gopakumar, “From free fields to AdS. III,” Phys. Rev. D 72 (2005) 066008, arXiv:hep-th/0504229.
- F. Bhat, R. Gopakumar, P. Maity, and B. Radhakrishnan, “Twistor coverings and Feynman diagrams,” JHEP 05 (2022) 150, arXiv:2112.05115 [hep-th].
- Y. Okawa and B. Zwiebach, “Twisted tachyon condensation in closed string field theory,” JHEP 03 (2004) 056, arXiv:hep-th/0403051.
- H. Yang and B. Zwiebach, “A closed string tachyon vacuum?,” JHEP 09 (2005) 054, arXiv:hep-th/0506077.
- N. Moeller and H. Yang, “The nonperturbative closed string tachyon vacuum to high level,” JHEP 04 (2007) 009, arXiv:hep-th/0609208.
- J. Scheinpflug and M. Schnabl, “Closed string tachyon condensation revisited,” arXiv:2308.16142 [hep-th].
- A. S. Schwarz and A. M. Zeitlin, “Super Riemann surfaces and fatgraphs,” Universe 9 (2023) no. 9, 384.
- M. Mulase and M. Penkava, “Ribbon graphs, quadratic differentials on Riemann surfaces, and algebraic curves defined over ℚ¯¯ℚ\overline{\mathbb{Q}}over¯ start_ARG blackboard_Q end_ARG," Asian Journal of Mathematics 2 (4),(1998) 875–920,” arXiv preprint math-ph/9811024 (1998) .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.