Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 98 tok/s Pro
GPT OSS 120B 424 tok/s Pro
Kimi K2 164 tok/s Pro
2000 character limit reached

Superconducting Quantum Memory with a Suspended Coaxial Resonator (2402.09504v1)

Published 14 Feb 2024 in quant-ph

Abstract: A promising way to store quantum information is by encoding it in the bosonic excitations of microwave resonators. This provides for long coherence times, low dephasing rates, as well as a hardware-efficient approach to quantum error correction. There are two main methods used to make superconducting microwave resonators: traditionally machined out of bulk material, and lithographically fabricated on-chip in thin film. 3D resonators have few loss channels and larger mode volumes, and therefore smaller participations in the lossy parts, but it can be challenging to reach high material qualities. On-chip resonators can use low-loss thin films, but confine the field more tightly, resulting in higher participations and additional loss channels from the dielectric substrate. In this work, we present a design in which a dielectric scaffold supports a thin-film conductor within a 3D package, thus combining the low surface participations of bulk-machined cavities with the high quality and control over materials of thin-film circuits. By incorporating a separate chip containing a transmon qubit, we realize a quantum memory and measure single-photon lifetimes in excess of a millisecond. This hybrid 3D architecture has several advantages for scaling, as it relaxes the importance of the package and permits modular construction with separately-replaceable qubit and resonator devices.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (25)
  1. A. Joshi, K. Noh,  and Y. Y. Gao, “Quantum information processing with bosonic qubits in circuit qed,” Quantum Science and Technology 6, 033001 (2021).
  2. O. Milul, B. Guttel, U. Goldblatt, S. Hazanov, L. M. Joshi, D. Chausovsky, N. Kahn, E. Çiftyürek, F. Lafont,  and S. Rosenblum, “Superconducting cavity qubit with tens of milliseconds single-photon coherence time,” PRX Quantum 4, 030336 (2023).
  3. A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov, M. Awida, S. Belomestnykh, S. Posen,  and A. Grassellino, “Three-dimensional superconducting resonators at t < 20 mK with photon lifetimes up to τ𝜏\tauitalic_τ = 2 s,” Physical Review Applied 13 (2020).
  4. M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang,  and R. J. Schoelkopf, “Quantum memory with millisecond coherence in circuit QED,” Physical Review B 94, 014506 (2016).
  5. S. Chakram, A. E. Oriani, R. K. Naik, A. V. Dixit, K. He, A. Agrawal, H. Kwon,  and D. I. Schuster, “Seamless high-q𝑞qitalic_q microwave cavities for multimode circuit quantum electrodynamics,” Physical Review Letters 127, 107701 (2021).
  6. M. Kudra, J. Biznárová, A. Fadavi Roudsari, J. J. Burnett, D. Niepce, S. Gasparinetti, B. Wickman,  and P. Delsing, “High quality three-dimensional aluminum microwave cavities,” Applied Physics Letters 117, 070601 (2020).
  7. P. Heidler, C. M. F. Schneider, K. Kustura, C. Gonzalez-Ballestero, O. Romero-Isart,  and G. Kirchmair, “Non-markovian effects of two-level systems in a niobium coaxial resonator with a single-photon lifetime of 10 milliseconds,” Physical Review Applied 16, 034024 (2021).
  8. K. S. Chou, J. Z. Blumoff, C. S. Wang, P. C. Reinhold, C. J. Axline, Y. Y. Gao, L. Frunzio, M. H. Devoret, L. Jiang,  and R. J. Schoelkopf, “Deterministic teleportation of a quantum gate between two logical qubits,” Nature 561, 368–373 (2018).
  9. C. Zhou, P. Lu, M. Praquin, T.-C. Chien, R. Kaufman, X. Cao, M. Xia, R. S. K. Mong, W. Pfaff, D. Pekker,  and M. Hatridge, “Realizing all-to-all couplings among detachable quantum modules using a microwave quantum state router,” npj Quantum Information 9, 1–9 (2023).
  10. M. V. P. Altoé, A. Banerjee, C. Berk, A. Hajr, A. Schwartzberg, C. Song, M. Alghadeer, S. Aloni, M. J. Elowson, J. M. Kreikebaum, E. K. Wong, S. M. Griffin, S. Rao, A. Weber-Bargioni, A. M. Minor, D. I. Santiago, S. Cabrini, I. Siddiqi,  and D. F. Ogletree, “Localization and mitigation of loss in niobium superconducting circuits,” PRX Quantum 3, 020312 (2022).
  11. K. D. Crowley, R. A. McLellan, A. Dutta, N. Shumiya, A. P. M. Place, X. H. Le, Y. Gang, T. Madhavan, M. P. Bland, R. Chang, N. Khedkar, Y. C. Feng, E. A. Umbarkar, X. Gui, L. V. H. Rodgers, Y. Jia, M. M. Feldman, S. A. Lyon, M. Liu, R. J. Cava, A. A. Houck,  and N. P. de Leon, “Disentangling losses in tantalum superconducting circuits,” Physical Review X 13, 041005 (2023).
  12. H. Deng, Z. Song, R. Gao, T. Xia, F. Bao, X. Jiang, H.-S. Ku, Z. Li, X. Ma, J. Qin, H. Sun, C. Tang, T. Wang, F. Wu, W. Yu, G. Zhang, X. Zhang, J. Zhou, X. Zhu, Y. Shi, H.-H. Zhao,  and C. Deng, “Titanium nitride film on sapphire substrate with low dielectric loss for superconducting qubits,” Physical Review Applied 19, 024013 (2023).
  13. S. Ganjam, Y. Wang, Y. Lu, A. Banerjee, C. U. Lei, L. Krayzman, K. Kisslinger, C. Zhou, R. Li, Y. Jia, M. Liu, L. Frunzio,  and R. J. Schoelkopf, “Surpassing millisecond coherence times in on-chip superconducting quantum memories by optimizing materials, processes, and circuit design,”  (2023), arXiv:2308.15539 [quant-ph] .
  14. T. Brecht, W. Pfaff, C. Wang, Y. Chu, L. Frunzio, M. H. Devoret,  and R. J. Schoelkopf, “Multilayer microwave integrated quantum circuits for scalable quantum computing,” npj Quantum Information 2, 16002 (2016).
  15. T. Brecht, Y. Chu, C. Axline, W. Pfaff, J. Z. Blumoff, K. Chou, L. Krayzman, L. Frunzio,  and R. J. Schoelkopf, “Micromachined integrated quantum circuit containing a superconducting qubit,” Physical Review Applied 7, 044018 (2017).
  16. C. U. Lei, L. Krayzman, S. Ganjam, L. Frunzio,  and R. J. Schoelkopf, “High coherence superconducting microwave cavities with indium bump bonding,” Applied Physics Letters 116, 154002 (2020).
  17. C. U. Lei, S. Ganjam, L. Krayzman, A. Banerjee, K. Kisslinger, S. Hwang, L. Frunzio,  and R. J. Schoelkopf, “Characterization of microwave loss using multimode superconducting resonators,” Physical Review Applied 20, 024045 (2023).
  18. A. P. Read, B. J. Chapman, C. U. Lei, J. C. Curtis, S. Ganjam, L. Krayzman, L. Frunzio,  and R. J. Schoelkopf, “Precision measurement of the microwave dielectric loss of sapphire in the quantum regime with parts-per-billion sensitivity,” Physical Review Applied 19, 034064 (2023).
  19. T. Brecht, M. Reagor, Y. Chu, W. Pfaff, C. Wang, L. Frunzio, M. H. Devoret,  and R. J. Schoelkopf, “Demonstration of superconducting micromachined cavities,” Applied Physics Letters 107, 192603 (2015).
  20. S. Ganjam, Improving the Coherence of Superconducting Quantum Circuits through Loss Characterization and Design Optimization, Ph.D. thesis, Yale University (2023).
  21. L. Krayzman, Thin-Film 3D Resonators for Superconducting Quantum Circuits, Ph.D. thesis, Yale University (2022).
  22. R. W. Heeres, B. Vlastakis, E. Holland, S. Krastanov, V. V. Albert, L. Frunzio, L. Jiang,  and R. J. Schoelkopf, “Cavity state manipulation using photon-number selective phase gates,” Physical Review Letters 115 (2015).
  23. S. Krastanov, V. V. Albert, C. Shen, C.-L. Zou, R. W. Heeres, B. Vlastakis, R. J. Schoelkopf,  and L. Jiang, “Universal control of an oscillator with dispersive coupling to a qubit,” Physical Review A 92, 040303 (2015).
  24. M. Reagor, H. Paik, G. Catelani, L. Sun, C. Axline, E. Holland, I. M. Pop, N. A. Masluk, T. Brecht, L. Frunzio, M. H. Devoret, L. Glazman,  and R. J. Schoelkopf, “Reaching 10 ms single photon lifetimes for superconducting aluminum cavities,” Applied Physics Letters 102, 192604 (2013).
  25. M. Reagor, Superconducting Cavities for Circuit Quantum Electrodynamics, Ph.D. thesis, Yale University (2015).
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube