Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Axion dark matter from inflation-driven quantum phase transition (2402.08716v2)

Published 13 Feb 2024 in hep-ph, astro-ph.CO, gr-qc, hep-ex, and hep-th

Abstract: We propose a new mechanism to produce axion dark matter from inflationary fluctuations. Quantum fluctuations during inflation are strengthened by a coupling of the axion kinetic term to the inflaton, which we parametrize as an effective curvature $\kappa$ in the axion equation of motion. A nonvanishing curvature breaks the scale invariance of the axion power spectrum, driving a quantum phase transition with $\kappa$ as the order parameter. The axion power spectrum is proportional to the inverse comoving horizon to the power of $\kappa$. For positive $\kappa$ the spectrum gets a red tilt, leading to an exponential enhancement of the axion abundance as the comoving horizon shrinks during inflation. This enhancement allows sufficient axion production to comprise the entire dark matter relic abundance despite the ultralight mass. Our mechanism predicts a significantly different parameter space from the usual misalignment mechanism. It allows for axion-like particle dark matter with a much lower decay constant and thus a larger coupling to Standard Model particles. Much of the parameter space can be probed by future experiments including haloscopes, nuclear clocks, CASPEr, and CMB-S4. We can also generate heavier QCD axion dark matter than the misalignment mechanism.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. E. G. M. Ferreira, Astron. Astrophys. Rev. 29, 7 (2021), arXiv:2005.03254 [astro-ph.CO] .
  2. L. Hui, Ann. Rev. Astron. Astrophys. 59, 247 (2021), arXiv:2101.11735 [astro-ph.CO] .
  3. D. Antypas et al.,   (2022), arXiv:2203.14915 [hep-ex] .
  4. H. Kim and A. Mitridate,   (2023), arXiv:2312.12225 [hep-ph] .
  5. H. Kim and G. Perez, Phys. Rev. D 109, 015005 (2024), arXiv:2205.12988 [hep-ph] .
  6. V. V. Flambaum and I. B. Samsonov, Phys. Rev. D 108, 075022 (2023), arXiv:2302.11167 [hep-ph] .
  7. V. V. Flambaum and A. J. Mansour, Phys. Rev. Lett. 131, 113004 (2023), arXiv:2304.04469 [hep-ph] .
  8. A. Amruth et al., Nature Astron. 7, 736 (2023), arXiv:2304.09895 [astro-ph.CO] .
  9. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978).
  10. F. Wilczek, Phys. Rev. Lett. 40, 279 (1978).
  11. R. D. Peccei and H. R. Quinn, Phys. Rev. Lett. 38, 1440 (1977a).
  12. R. D. Peccei and H. R. Quinn, Phys. Rev. D 16, 1791 (1977b).
  13. D. J. E. Marsh, Phys. Rept. 643, 1 (2016), arXiv:1510.07633 [astro-ph.CO] .
  14. M. Dine and W. Fischler, Phys. Lett. B 120, 137 (1983).
  15. M. Redi and A. Tesi, Phys. Rev. D 107, 095032 (2023), arXiv:2211.06421 [hep-ph] .
  16. G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738 (1977).
  17. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  18. P. A. R. Ade et al. (BICEP, Keck), Phys. Rev. Lett. 127, 151301 (2021), arXiv:2110.00483 [astro-ph.CO] .
  19. P. André et al. (PRISM), JCAP 02, 006 (2014), arXiv:1310.1554 [astro-ph.CO] .
  20. K. N. Abazajian et al. (CMB-S4),   (2016), arXiv:1610.02743 [astro-ph.CO] .
  21. J. Pritchard et al. (Cosmology-SWG, EoR/CD-SWG), PoS AASKA14, 012 (2015), arXiv:1501.04291 [astro-ph.CO] .
  22. A. Weltman et al., Publ. Astron. Soc. Austral. 37, e002 (2020), arXiv:1810.02680 [astro-ph.CO] .
  23. S. Hoof and L. Schulz, JCAP 03, 054 (2023), arXiv:2212.09764 [hep-ph] .
  24. M. Ajello et al. (Fermi-LAT), Phys. Rev. Lett. 116, 161101 (2016), arXiv:1603.06978 [astro-ph.HE] .
  25. S. J. Asztalos et al. (ADMX), Phys. Rev. Lett. 104, 041301 (2010), arXiv:0910.5914 [astro-ph.CO] .
  26. N. Du et al. (ADMX), Phys. Rev. Lett. 120, 151301 (2018), arXiv:1804.05750 [hep-ex] .
  27. T. Braine et al. (ADMX), Phys. Rev. Lett. 124, 101303 (2020), arXiv:1910.08638 [hep-ex] .
  28. C. Bartram et al. (ADMX), Phys. Rev. Lett. 127, 261803 (2021), arXiv:2110.06096 [hep-ex] .
  29. L. Zhong et al. (HAYSTAC), Phys. Rev. D 97, 092001 (2018), arXiv:1803.03690 [hep-ex] .
  30. K. M. Backes et al. (HAYSTAC), Nature 590, 238 (2021), arXiv:2008.01853 [quant-ph] .
  31. M. J. Jewell et al. (HAYSTAC), Phys. Rev. D 107, 072007 (2023), arXiv:2301.09721 [hep-ex] .
  32. H. Chang et al. (TASEH), Phys. Rev. Lett. 129, 111802 (2022), arXiv:2205.05574 [hep-ex] .
  33. O. Kwon et al. (CAPP), Phys. Rev. Lett. 126, 191802 (2021), arXiv:2012.10764 [hep-ex] .
  34. J. Kim et al., Phys. Rev. Lett. 130, 091602 (2023a), arXiv:2207.13597 [hep-ex] .
  35. A. K. Yi et al., Phys. Rev. Lett. 130, 071002 (2023), arXiv:2210.10961 [hep-ex] .
  36. Y. Kim et al.,   (2023b), arXiv:2312.11003 [hep-ex] .
  37. C. M. Adair et al., Nature Commun. 13, 6180 (2022), arXiv:2211.02902 [hep-ex] .
  38. C. O’Hare, “cajohare/axionlimits: Axionlimits,” https://cajohare.github.io/AxionLimits/ (2020).
  39. G. G. Raffelt, Lect. Notes Phys. 741, 51 (2008), arXiv:hep-ph/0611350 .
  40. C. Abel et al., Phys. Rev. X 7, 041034 (2017), arXiv:1708.06367 [hep-ph] .
  41. R. L. Workman et al. (Particle Data Group), PTEP 2022, 083C01 (2022).
  42. K. K. Rogers and H. V. Peiris, Phys. Rev. Lett. 126, 071302 (2021), arXiv:2007.12705 [astro-ph.CO] .
  43. A. Afzal et al. (NANOGrav), Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
  44. D. J. E. Marsh and J. C. Niemeyer, Phys. Rev. Lett. 123, 051103 (2019), arXiv:1810.08543 [astro-ph.CO] .
  45. E. O. Nadler et al. (DES), Phys. Rev. Lett. 126, 091101 (2021), arXiv:2008.00022 [astro-ph.CO] .
  46. A. Arvanitaki and S. Dubovsky, Phys. Rev. D 83, 044026 (2011), arXiv:1004.3558 [hep-th] .
  47. L. Brouwer et al. (DMRadio), Phys. Rev. D 106, 103008 (2022), arXiv:2204.13781 [hep-ex] .
  48. J. Martin and J. Yokoyama, JCAP 01, 025 (2008), arXiv:0711.4307 [astro-ph] .
  49. R. Namba, Phys. Rev. D 86, 083518 (2012), arXiv:1207.5547 [astro-ph.CO] .
  50. K. Nakayama, JCAP 10, 019 (2019), arXiv:1907.06243 [hep-ph] .
  51. K. Nakayama, JCAP 08, 033 (2020), arXiv:2004.10036 [hep-ph] .
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.