Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Developing a Multi-variate Prediction Model For COVID-19 From Crowd-sourced Respiratory Voice Data (2402.07619v1)

Published 12 Feb 2024 in cs.SD, cs.AI, and eess.AS

Abstract: COVID-19 has affected more than 223 countries worldwide and in the Post-COVID Era, there is a pressing need for non-invasive, low-cost, and highly scalable solutions to detect COVID-19. We develop a deep learning model to identify COVID-19 from voice recording data. The novelty of this work is in the development of deep learning models for COVID-19 identification from only voice recordings. We use the Cambridge COVID-19 Sound database which contains 893 speech samples, crowd-sourced from 4352 participants via a COVID-19 Sounds app. Voice features including Mel-spectrograms and Mel-frequency cepstral coefficients (MFCC) and CNN Encoder features are extracted. Based on the voice data, we develop deep learning classification models to detect COVID-19 cases. These models include Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) and Hidden-Unit BERT (HuBERT). We compare their predictive power to baseline machine learning models. HuBERT achieves the highest accuracy of 86\% and the highest AUC of 0.93. The results achieved with the proposed models suggest promising results in COVID-19 diagnosis from voice recordings when compared to the results obtained from the state-of-the-art.

Citations (3)

Summary

We haven't generated a summary for this paper yet.