Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the pragmatism of using binary classifiers over data intensive neural network classifiers for detection of COVID-19 from voice (2204.04802v2)

Published 11 Apr 2022 in cs.SD, cs.LG, cs.MM, and eess.AS

Abstract: Lately, there has been a global effort by multiple research groups to detect COVID-19 from voice. Different researchers use different kinds of information from the voice signal to achieve this. Various types of phonated sounds and the sound of cough and breath have all been used with varying degree of success in automated voice-based COVID-19 detection apps. In this paper, we show that detecting COVID-19 from voice does not require custom-made non-standard features or complicated neural network classifiers rather it can be successfully done with just standard features and simple binary classifiers. In fact, we show that the latter is not only more accurate and interpretable but also more computationally efficient in that they can be run locally on small devices. We demonstrate this on a human-curated dataset of over 1000 subjects, collected and calibrated in clinical settings.

Citations (5)

Summary

We haven't generated a summary for this paper yet.