Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Parameterizations for Gradient-based Markov Chain Monte Carlo on the Stiefel Manifold: A Comparative Study (2402.07434v4)

Published 12 Feb 2024 in stat.CO

Abstract: Orthogonal matrices play an important role in probability and statistics, particularly in high-dimensional statistical models. Parameterizing these models using orthogonal matrices facilitates dimension reduction and parameter identification. However, establishing the theoretical validity of statistical inference in these models from a frequentist perspective is challenging, leading to a preference for Bayesian approaches because of their ability to offer consistent uncertainty quantification. Markov chain Monte Carlo methods are commonly used for numerical approximation of posterior distributions, and sampling on the Stiefel manifold, which comprises orthogonal matrices, poses significant difficulties. While various strategies have been proposed for this purpose, gradient-based Markov chain Monte Carlo with parameterizations is the most efficient. However, a comprehensive comparison of these parameterizations is lacking in the existing literature. This study aims to address this gap by evaluating numerical efficiency of the four alternative parameterizations of orthogonal matrices under equivalent conditions. The evaluation was conducted for four problems. The results suggest that polar expansion parameterization is the most efficient, particularly for the high-dimensional and complex problems. However, all parameterizations exhibit limitations in significantly high-dimensional or difficult tasks, emphasizing the need for further advancements in sampling methods for orthogonal matrices.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

X Twitter Logo Streamline Icon: https://streamlinehq.com