Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk assessment and observation of driver with pedestrian using instantaneous heart rate and HRV (2402.07041v1)

Published 10 Feb 2024 in cs.RO and cs.HC

Abstract: Currently, human drivers outperform self-driving vehicles in many conditions such as collision avoidance. Therefore, understanding human driver behaviour in these conditions will provide insight for future autonomous vehicles. For understanding driver behaviour, risk assessment is applied so far as one of the approaches by using both subjective and objective measurement. Subjective measurement methods such as questionnaires may provide insight into driver risk assessment but there is often significant variability between drivers.Physiological measurements such as heart rate (HR), electroencephalogram (EEG), and electromyogram (EMG) provide more objective measurements of driver risk assessment. HR is often used for measuring driver risk assessment based on observed correlations between HR and risk perception. Previous work has used HR to measure driver risk assessment in self-driving systems, but pedestrian dynamics is not considered for the research. In this study, we observed driver behaviour in certain scenarios which have pedestrian on driving simulator. The scenarios have safe/unsafe situations (i.e., pedestrian crosses road and vehicle may hit pedestrian in one scenario), HR analysis in time/frequency domain is processed for risk assessment. As a result, HR analysis in frequency domain shows certain reasonability for driver risk assessment when driver has pedestrian in its traffic.

Summary

We haven't generated a summary for this paper yet.