Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Progressive unsupervised domain adaptation for ASR using ensemble models and multi-stage training (2402.04805v1)

Published 7 Feb 2024 in eess.AS

Abstract: In Automatic Speech Recognition (ASR), teacher-student (T/S) training has shown to perform well for domain adaptation with small amount of training data. However, adaption without ground-truth labels is still challenging. A previous study has shown the effectiveness of using ensemble teacher models in T/S training for unsupervised domain adaptation (UDA) but its performance still lags behind compared to the model trained on in-domain data. This paper proposes a method to yield better UDA by training multi-stage students with ensemble teacher models. Initially, multiple teacher models are trained on labelled data from read and meeting domains. These teachers are used to train a student model on unlabelled out-of-domain telephone speech data. To improve the adaptation, subsequent student models are trained sequentially considering previously trained model as their teacher. Experiments are conducted with three teachers trained on AMI, WSJ and LibriSpeech and three stages of students on SwitchBoard data. Results shown on eval00 test set show significant WER improvement with multi-stage training with an absolute gain of 9.8%, 7.7% and 3.3% at each stage.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Rehan Ahmad (5 papers)
  2. Muhammad Umar Farooq (18 papers)
  3. Thomas Hain (58 papers)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com