Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CMSA algorithm for solving the prioritized pairwise test data generation problem in software product lines (2402.04597v1)

Published 7 Feb 2024 in cs.AI and cs.SE

Abstract: In Software Product Lines (SPLs) it may be difficult or even impossible to test all the products of the family because of the large number of valid feature combinations that may exist. Thus, we want to find a minimal subset of the product family that allows us to test all these possible combinations (pairwise). Furthermore, when testing a single product is a great effort, it is desirable to first test products composed of a set of priority features. This problem is called Prioritized Pairwise Test Data Generation Problem. State-of-the-art algorithms based on Integer Linear Programming for this problema are faster enough for small and medium instances. However, there exists some real instances that are too large to be computed with these algorithms in a reasonable time because of the exponential growth of the number of candidate solutions. Also, these heuristics not always lead us to the best solutions. In this work we propose a new approach based on a hybrid metaheuristic algorithm called Construct, Merge, Solve & Adapt. We compare this matheuristic with four algorithms: a Hybrid algorithm based on Integer Linear Programming ((HILP), a Hybrid algorithm based on Integer Nonlinear Programming (HINLP), the Parallel Prioritized Genetic Solver (PPGS), and a greedy algorithm called prioritized-ICPL. The analysis reveals that CMSA results in statistically significantly better quality solutions in most instances and for most levels of weighted coverage, although it requires more execution time.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets