Papers
Topics
Authors
Recent
Search
2000 character limit reached

CMSA algorithm for solving the prioritized pairwise test data generation problem in software product lines

Published 7 Feb 2024 in cs.AI and cs.SE | (2402.04597v1)

Abstract: In Software Product Lines (SPLs) it may be difficult or even impossible to test all the products of the family because of the large number of valid feature combinations that may exist. Thus, we want to find a minimal subset of the product family that allows us to test all these possible combinations (pairwise). Furthermore, when testing a single product is a great effort, it is desirable to first test products composed of a set of priority features. This problem is called Prioritized Pairwise Test Data Generation Problem. State-of-the-art algorithms based on Integer Linear Programming for this problema are faster enough for small and medium instances. However, there exists some real instances that are too large to be computed with these algorithms in a reasonable time because of the exponential growth of the number of candidate solutions. Also, these heuristics not always lead us to the best solutions. In this work we propose a new approach based on a hybrid metaheuristic algorithm called Construct, Merge, Solve & Adapt. We compare this matheuristic with four algorithms: a Hybrid algorithm based on Integer Linear Programming ((HILP), a Hybrid algorithm based on Integer Nonlinear Programming (HINLP), the Parallel Prioritized Genetic Solver (PPGS), and a greedy algorithm called prioritized-ICPL. The analysis reveals that CMSA results in statistically significantly better quality solutions in most instances and for most levels of weighted coverage, although it requires more execution time.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.