Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generic CP-Supported CMSA for Binary Integer Linear Programs (1805.11820v1)

Published 30 May 2018 in cs.AI

Abstract: Construct, Merge, Solve and Adapt (CMSA) is a general hybrid metaheuristic for solving combinatorial optimization problems. At each iteration, CMSA (1) constructs feasible solutions to the tackled problem instance in a probabilistic way and (2) solves a reduced problem instance (if possible) to optimality. The construction of feasible solutions is hereby problem-specific, usually involving a fast greedy heuristic. The goal of this paper is to design a problem-agnostic CMSA variant whose exclusive input is an integer linear program (ILP). In order to reduce the complexity of this task, the current study is restricted to binary ILPs. In addition to a basic problem-agnostic CMSA variant, we also present an extended version that makes use of a constraint propagation engine for constructing solutions. The results show that our technique is able to match the upper bounds of the standalone application of CPLEX in the context of rather easy-to-solve instances, while it generally outperforms the standalone application of CPLEX in the context of hard instances. Moreover, the results indicate that the support of the constraint propagation engine is useful in the context of problems for which finding feasible solutions is rather difficult.

Citations (1)

Summary

We haven't generated a summary for this paper yet.