Quantum mechanical bootstrap on the interval: obtaining the exact spectrum (2402.03434v1)
Abstract: We show that for a particular model, the quantum mechanical bootstrap is capable of finding exact results. We consider a solvable system with Hamiltonian $H=SZ(1-Z)S$, where $Z$ and $S$ satisfy canonical commutation relations. While this model may appear unusual, using an appropriate coordinate transformation, the Schr\"odinger equation can be cast into a standard form with a P\"oschl-Teller-type potential. Since the system is defined on an interval, it is well-known that $S$ is not self-adjoint. Nevertheless, the bootstrap method can still be implemented, producing an infinite set of positivity constraints. Using a certain operator ordering, the energy eigenvalues are only constrained into bands. With an alternative ordering, however, we find that a finite number of constraints is sufficient to fix the low-lying energy levels exactly.
- Xizhi Han, Sean A. Hartnoll and Jorrit Kruthoff “Bootstrapping Matrix Quantum Mechanics” In Phys. Rev. Lett. 125.4, 2020, pp. 041601 DOI: 10.1103/PhysRevLett.125.041601
- Henry W. Lin “Bootstraps to strings: solving random matrix models with positivity” In JHEP 06, 2020, pp. 090 DOI: 10.1007/JHEP06(2020)090
- “Numerical bootstrap in quantum mechanics” In Phys. Lett. B 823, 2021, pp. 136785 DOI: 10.1016/j.physletb.2021.136785
- Yu Aikawa, Takeshi Morita and Kota Yoshimura “Bootstrap method in harmonic oscillator” In Phys. Lett. B 833, 2022, pp. 137305 DOI: 10.1016/j.physletb.2022.137305
- “Bootstrapping more QM systems” In J. Phys. A 55.27, 2022, pp. 275304 DOI: 10.1088/1751-8121/ac7118
- “Bootstrapping PT symmetric quantum mechanics” In Phys. Lett. B 834, 2022, pp. 137445 DOI: 10.1016/j.physletb.2022.137445
- Bao-ning Du, Min-xin Huang and Pei-xuan Zeng “Bootstrapping Calabi–Yau quantum mechanics” In Commun. Theor. Phys. 74.9, 2022, pp. 095801 DOI: 10.1088/1572-9494/ac679a
- “Bootstrapping Simple QM Systems”, 2021 arXiv:2108.08757 [hep-th]
- Colin Oscar Nancarrow and Yuan Xin “Bootstrapping the gap in quantum spin systems” In JHEP 08, 2023, pp. 052 DOI: 10.1007/JHEP08(2023)052
- “Anomalous bootstrap on the half-line” In Phys. Rev. D 106.4, 2022, pp. 045029 DOI: 10.1103/PhysRevD.106.045029
- “Semidefinite programming algorithm for the quantum mechanical bootstrap” In Phys. Rev. E 107.5, 2023, pp. L053301 DOI: 10.1103/PhysRevE.107.L053301
- Xihe Hu “Different Bootstrap Matrices in Many QM Systems”, 2022 arXiv:2206.00767 [quant-ph]
- Yu Aikawa, Takeshi Morita and Kota Yoshimura “Application of bootstrap to a θ𝜃\thetaitalic_θ term” In Phys. Rev. D 105.8, 2022, pp. 085017 DOI: 10.1103/PhysRevD.105.085017
- Tajron Jurić “Observables in Quantum Mechanics and the Importance of Self-Adjointness” In Universe 8.2, 2022, pp. 129 DOI: 10.3390/universe8020129
- “Canonical quantization on the half-line and in an interval based upon an alternative concept for the momentum in a space with boundaries” In Phys. Rev. Res. 3.3, 2021, pp. 033079 DOI: 10.1103/PhysRevResearch.3.033079
- “Alternative momentum concept for a quantum mechanical particle in a box” In Phys. Rev. Res. 3 American Physical Society, 2021, pp. L042008 DOI: 10.1103/PhysRevResearch.3.L042008
- David Vegh “The ’t Hooft equation as a quantum spectral curve”, 2023 arXiv:2301.07154 [hep-th]
- J.G. Esteve “Origin of the anomalies: The Modified Heisenberg equation” In Phys. Rev. D 66, 2002, pp. 125013 DOI: 10.1103/PhysRevD.66.125013
- Takeshi Morita “Universal bounds on quantum mechanics through energy conservation and the bootstrap method” In PTEP 2023.2, 2023, pp. 023A01 DOI: 10.1093/ptep/ptad001
- Neal H. McCoy “On Commutation Rules in the Algebra of Quantum Mechanics” In Proceedings of the National Academy of Sciences of the United States of America 15.3 National Academy of Sciences, 1929, pp. 200–202 URL: http://www.jstor.org/stable/85232
- J.C. Adams “On the Expression of the Product of Any Two Legendre’s Coefficients by Means of a Series of Legendre’s Coefficients” In Proceedings of the Royal Society of London 27 The Royal Society, 1878, pp. 63–71 URL: http://www.jstor.org/stable/113644
- Matthew P. O’Donnell and Paul M. Weaver “RAPID analysis of variable stiffness beams and plates: Legendre polynomial triple-product formulation” In International Journal for Numerical Methods in Engineering 112.1, 2017, pp. 86–100 DOI: https://doi.org/10.1002/nme.5528
- Guillaume Marc Laurent and Geoffrey Robert Harrison “The scaling properties and the multiple derivative of Legendre polynomials” In arXiv preprint arXiv:1711.00925, 2017
- Wolfram Research Inc. “Mathematica, Version 13.3” Champaign, IL, 2023 URL: https://www.wolfram.com/mathematica
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.