Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Wild orbits and generalised singularity modules: stratifications and quantisation (2402.03278v2)

Published 5 Feb 2024 in math.QA, math-ph, math.MP, math.RA, and math.RT

Abstract: We study isomorphism classes of untwisted irregular singular meromorphic connections on principal bundles over (wild) Riemann surfaces, for any complex reductive structure group $G$ and polar divisor. In particular we compute the stabilisers of suitable marked points on their principal part orbits, showing the stabilisers are connected and controlled by the corresponding filtration of (Levi factors of) nested parabolic subgroups of $G$; this uniquely determines the orbits as complex homogeneous manifolds for groups of jets of principal $G$-bundle automorphisms. Moreover, when the residue is semisimple we stratify the space of orbits by the stabilisers, relating this to local wild mapping class groups and generalising the Levi stratification of a Cartan subalgebra $\mathfrak{t} \subseteq \mathfrak{g} = \operatorname{Lie}(G)$: the dense stratum corresponds to the generic setting of irregular isomonodromic deformations `a la Jimbo-Miwa-Ueno. Then we adapt a result of Alekseev-Lachowska to deformation-quantise nongeneric orbits: the $\ast$-product involves affine-Lie-algebra modules, extending the generalised Verma modules (in the case of regular singularities) and the singularity' modules of F.-R. (in the case of generic irregular singularities). As in the generic case, the modules contain Whittaker vectors for the Gaiotto-Teschner Virasoro pairs from irregular Liouville conformal field theory; but they now provide all the quotients which are obtained when the corresponding parameters leave the aforementioned dense strata. We also construct Shapovalov forms for the corresponding representations of truncated (holomorphic) current Lie algebras, leading to a conjectural irreducibility criterion. Finally, we use these representations to construct new flat vector bundles of vacua/covacua \a la Wess--Zumino-Novikov-Witten, equipped with connections `a la Knizhnik-Zamolodchikov.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.