Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Declipping and the recovery of vectors from saturated measurements (2402.03237v1)

Published 5 Feb 2024 in math.FA, cs.NA, math.MG, and math.NA

Abstract: A frame $(x_j){j\in J}$ for a Hilbert space $H$ allows for a linear and stable reconstruction of any vector $x\in H$ from the linear measurements $(\langle x,x_j\rangle){j\in J}$. However, there are many situations where some information in the frame coefficients is lost. In applications where one is using sensors with a fixed dynamic range, any measurement above that range is registered as the maximum, and any measurement below that range is registered as the minimum. Depending on the context, recovering a vector from such measurements is called either declipping or saturation recovery. We initiate a frame theoretic approach to saturation recovery in a similar way to what [BCE06] did for phase retrieval. We characterize when saturation recovery is possible, show optimal frames for use with saturation recovery correspond to minimal multi-fold packings in projective space, and prove that the classical frame algorithm may be adapted to this non-linear problem to provide a reconstruction algorithm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.