Stable phase retrieval and perturbations of frames (2212.13681v1)
Abstract: A frame $(x_j){j\in J}$ for a Hilbert space $H$ is said to do phase retrieval if for all distinct vectors $x,y\in H$ the magnitude of the frame coefficients $(|\langle x, x_j\rangle|){j\in J}$ and $(|\langle y, x_j\rangle|)_{j\in J}$ distinguish $x$ from $y$ (up to a unimodular scalar). A frame which does phase retrieval is said to do $C$-stable phase retrieval if the recovery of any vector $x\in H$ from the magnitude of the frame coefficients is $C$-Lipschitz. It is known that if a frame does stable phase retrieval then any sufficiently small perturbation of the frame vectors will do stable phase retrieval, though with a slightly worse stability constant. We provide new quantitative bounds on how the stability constant for phase retrieval is affected by a small perturbation of the frame vectors. These bounds are significant in that they are independent of the dimension of the Hilbert space and the number of vectors in the frame.