Multiple testing using uniform filtering of ordered p-values (2402.03192v1)
Abstract: We investigate the multiplicity model with m values of some test statistic independently drawn from a mixture of no effect (null) and positive effect (alternative), where we seek to identify, the alternative test results with a controlled error rate. We are interested in the case where the alternatives are rare. A number of multiple testing procedures filter the set of ordered p-values in order to eliminate the nulls. Such an approach can only work if the p-values originating from the alternatives form one or several identifiable clusters. The Benjamini and Hochberg (BH) method, for example, assumes that this cluster occurs in a small interval $(0,\Delta)$ and filters out all or most of the ordered p-values $p_{(r)}$ above a linear threshold $s \times r$. In repeated applications this filter controls the false discovery rate via the slope s. We propose a new adaptive filter that deletes the p-values from regions of uniform distribution. In cases where a single cluster remains, the p-values in an interval are declared alternatives, with the mid-point and the length of the interval chosen by controlling the data-dependent FDR at a desired level.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.