Unconditionally energy stable IEQ-FEMs for the Cahn-Hilliard equation and Allen-Cahn equation
Abstract: In this paper, we present several unconditionally energy-stable invariant energy quadratization (IEQ) finite element methods (FEMs) with linear, first- and second-order accuracy for solving both the Cahn-Hilliard equation and the Allen-Cahn equation. For time discretization, we compare three distinct IEQ-FEM schemes that position the intermediate function introduced by the IEQ approach in different function spaces: finite element space, continuous function space, or a combination of these spaces. Rigorous proofs establishing the existence and uniqueness of the numerical solution, along with analyses of energy dissipation for both equations and mass conservation for the Cahn-Hilliard equation, are provided. The proposed schemes' accuracy, efficiency, and solution properties are demonstrated through numerical experiments.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.