Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two novel numerical methods for gradient flows: generalizations of the Invariant Energy Quadratization method (2306.06586v1)

Published 11 Jun 2023 in math.NA and cs.NA

Abstract: In this paper, we conduct an in-depth investigation of the structural intricacies inherent to the Invariant Energy Quadratization (IEQ) method as applied to gradient flows, and we dissect the mechanisms that enable this method to uphold linearity and the conservation of energy simultaneously. Building upon this foundation, we propose two methods: Invariant Energy Convexification and Invariant Energy Functionalization. These approaches can be perceived as natural extensions of the IEQ method. Employing our novel approaches, we reformulate the system connected to gradient flow, construct a semi-discretized numerical scheme, and obtain a commensurate modified energy dissipation law for both proposed methods. Finally, to underscore their practical utility, we provide numerical evidence demonstrating these methods' accuracy, stability, and effectiveness when applied to both Allen-Cahn and Cahn-Hilliard equations.

Summary

We haven't generated a summary for this paper yet.