Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CC-VPSTO: Chance-Constrained Via-Point-based Stochastic Trajectory Optimisation for Safe and Efficient Online Robot Motion Planning (2402.01370v3)

Published 2 Feb 2024 in cs.RO, cs.SY, and eess.SY

Abstract: Safety in the face of uncertainty is a key challenge in robotics. We introduce a real-time capable framework to generate safe and task-efficient robot motions for stochastic control problems. We frame this as a chance-constrained optimisation problem constraining the probability of the controlled system to violate a safety constraint to be below a set threshold. To estimate this probability we propose a Monte--Carlo approximation. We suggest several ways to construct the problem given a fixed number of uncertainty samples, such that it is a reliable over-approximation of the original problem, i.e. any solution to the sample-based problem adheres to the original chance-constraint with high confidence. To solve the resulting problem, we integrate it into our motion planner VP-STO and name the enhanced framework Chance-Constrained (CC)-VPSTO. The strengths of our approach lie in i) its generality, without assumptions on the underlying uncertainty distribution, system dynamics, cost function, or the form of inequality constraints; and ii) its applicability to MPC-settings. We demonstrate the validity and efficiency of our approach on both simulation and real-world robot experiments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. S. Dai, S. Schaffert, A. Jasour, A. Hofmann, and B. Williams, “Chance constrained motion planning for high-dimensional robots,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 8805–8811.
  2. K. Margellos, P. Goulart, and J. Lygeros, “On the road between robust optimization and the scenario approach for chance constrained optimization problems,” IEEE Transactions on Automatic Control, vol. 59, no. 8, pp. 2258–2263, 2014.
  3. G. Schildbach, L. Fagiano, C. Frei, and M. Morari, “The scenario approach for stochastic model predictive control with bounds on closed-loop constraint violations,” Automatica, vol. 50, no. 12, pp. 3009–3018, 2014.
  4. L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, “A probabilistic particle-control approximation of chance-constrained stochastic predictive control,” IEEE Transactions on Robotics, vol. 26, no. 3, pp. 502–517, 2010.
  5. J. Jankowski, L. Brudermüller, N. Hawes, and S. Calinon, “VP-STO: Via-point-based stochastic trajectory optimization for reactive robot behavior,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 10 125–10 131.
  6. T. A. N. Heirung, J. A. Paulson, J. O’Leary, and A. Mesbah, “Stochastic model predictive control—how does it work?” Computers & Chemical Engineering, vol. 114, pp. 158–170, 2018.
  7. A. Mesbah, “Stochastic model predictive control: An overview and perspectives for future research,” IEEE Control Systems Magazine, vol. 36, no. 6, pp. 30–44, 2016.
  8. O. de Groot, L. Ferranti, D. Gavrila, and J. Alonso-Mora, “Scenario-based motion planning with bounded probability of collision,” arXiv preprint arXiv:2307.01070, 2023.
  9. E. Schmerling and M. Pavone, “Evaluating trajectory collision probability through adaptive importance sampling for safe motion planning,” arXiv preprint arXiv:1609.05399, 2016.
  10. L. Blackmore, “A probabilistic particle control approach to optimal, robust predictive control,” in AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006, p. 6240.
  11. G. C. Calafiore and M. C. Campi, “The scenario approach to robust control design,” IEEE Transactions on automatic control, vol. 51, no. 5, pp. 742–753, 2006.
  12. G. C. Calafiore, “Random convex programs,” SIAM Journal on Optimization, vol. 20, no. 6, pp. 3427–3464, 2010.
  13. G. O. Berger, R. M. Jungers, and Z. Wang, “Chance-constrained quasi-convex optimization with application to data-driven switched systems control,” in Learning for Dynamics and Control.   PMLR, 2021, pp. 571–583.
  14. A. Wang, A. Jasour, and B. Williams, “Moment state dynamical systems for nonlinear chance-constrained motion planning,” arXiv preprint arXiv:2003.10379, 2020.
  15. S. Priore and M. Oishi, “Chance constrained stochastic optimal control based on sample statistics with almost surely probabilistic guarantees,” arXiv preprint arXiv:2303.16981, 2023.
  16. L. Blackmore, H. Li, and B. Williams, “A probabilistic approach to optimal robust path planning with obstacles,” in 2006 American Control Conference.   IEEE, 2006, pp. 7–pp.
  17. S. Yan, P. Goulart, and M. Cannon, “Stochastic model predictive control with discounted probabilistic constraints,” in 2018 European Control Conference (ECC).   IEEE, 2018, pp. 1003–1008.
  18. A. Nemirovski and A. Shapiro, “Convex approximations of chance constrained programs,” SIAM Journal on Optimization, vol. 17, no. 4, pp. 969–996, 2007.
  19. A. M. Jasour, N. S. Aybat, and C. M. Lagoa, “Semidefinite programming for chance constrained optimization over semialgebraic sets,” SIAM Journal on Optimization, vol. 25, no. 3, pp. 1411–1440, 2015.
  20. G. Alcan and V. Kyrki, “Differential dynamic programming with nonlinear safety constraints under system uncertainties,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1760–1767, 2022.
  21. M. Ono and B. C. Williams, “Iterative risk allocation: A new approach to robust model predictive control with a joint chance constraint,” in 2008 47th IEEE Conference on Decision and Control.   IEEE, 2008, pp. 3427–3432.
  22. A. Parsi, P. Anagnostaras, A. Iannelli, and R. S. Smith, “Computationally efficient robust mpc using optimized constraint tightening,” in 2022 IEEE 61st Conference on Decision and Control (CDC).   IEEE, 2022, pp. 1770–1775.
  23. W. Sun, L. G. Torres, J. Van Den Berg, and R. Alterovitz, “Safe motion planning for imprecise robotic manipulators by minimizing probability of collision,” in Robotics Research: The 16th International Symposium ISRR.   Springer, 2016, pp. 685–701.
  24. J. Van Den Berg, P. Abbeel, and K. Goldberg, “Lqg-mp: Optimized path planning for robots with motion uncertainty and imperfect state information,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 895–913, 2011.
  25. J. Yin, Z. Zhang, and P. Tsiotras, “Risk-aware model predictive path integral control using conditional value-at-risk,” in 2023 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2023, pp. 7937–7943.
  26. N. Hansen, “The CMA evolution strategy: A tutorial,” arXiv preprint arXiv:1604.00772, 2016.
  27. M. Taboga, “Lectures on probability theory and mathematical statistics,” (No Title), 2017.
  28. M. C. Campi and S. Garatti, “A sampling-and-discarding approach to chance-constrained optimization: feasibility and optimality,” Journal of optimization theory and applications, vol. 148, no. 2, pp. 257–280, 2011.
  29. J. Jankowski, M. Racca, and S. Calinon, “From Key Positions to Optimal Basis Functions for Probabilistic Adaptive Control,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3242–3249, 2022.
  30. C. Jiang, A. Cornman, C. Park, B. Sapp, Y. Zhou, D. Anguelov, et al., “Motiondiffuser: Controllable multi-agent motion prediction using diffusion,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 9644–9653.
  31. A. Hakobyan and I. Yang, “Wasserstein distributionally robust motion control for collision avoidance using conditional value-at-risk,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 939–957, 2021.
  32. A. Thorpe, T. Lew, M. Oishi, and M. Pavone, “Data-driven chance constrained control using kernel distribution embeddings,” in Learning for Dynamics and Control Conference.   PMLR, 2022, pp. 790–802.
  33. Z. Zhang, J. Tomlinson, and C. Martin, “Splines and linear control theory,” Acta Math. Appl, vol. 49, pp. 1–34, 1997.
  34. B. Gärtner and M. Hoffmann, “Computational geometry lecture notes hs 2013,” Dept. of Computer Science, ETH, Zürich, Switzerland, 2013.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com