Quantum phase transitions and composite excitations of antiferromagnetic spin trimer chains in a magnetic field (2402.00272v3)
Abstract: Motivated by recent advancements in theoretical and experimental studies of the high-energy excitations on an antiferromagnetic trimer chain, we numerically investigate the quantum phase transition and composite dynamics in this system by applying a magnetic field. The numerical methods we used include the exact diagonalization, density matrix renormalization group, time-dependent variational principle, and cluster perturbation theory. From calculating the entanglement entropy, we have revealed the phase diagram which includes the XY-I, $1/3$ magnetization plateau, XY-II, and ferromagnetic phases. Both the critical XY-I and XY-II phases are characterized by the conformal field theory with a central charge $c \simeq 1$. By analyzing the dynamic spin structure factor, we elucidate the distinct features of spin dynamics across different phases. In the regime with weak intertrimer interaction, we identify the intermediate-energy and high-energy modes in the XY-I and $1/3$ magnetization plateau phases as internal trimer excitations, corresponding to the propagating of doublons and quartons, respectively. Notably, applying a magnetic field splits the high-energy spectrum into two branches, labeled as the upper quarton and lower quarton. Furthermore, we explore the spin dynamics of a frustrated trimerized model closely related to the quantum magnet \ce{Na_2Cu_3Ge_4O_12}. In the end, we extend our discuss on the possibility of the quarton Bose-Einstein condensation in the trimer systems. Our results are expected to be further verified through the inelastic neutron scattering and resonant inelastic X-ray scattering, and also provide valuable insights for exploring high-energy exotic excitations.
- One-dimensional magnetism, 1–83 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2004).
- Two-spinon dynamic structure factor of the one-dimensional S=1/2S12\mathrm{S}=1/2roman_S = 1 / 2 Heisenberg antiferromagnet. Phys. Rev. B 55, 12510–12517 (1997).
- Unbound spinons in the S=1/2S12\mathrm{S}=1/2roman_S = 1 / 2 antiferromagnetic chain KCuF3subscriptKCuF3\mathrm{KCuF}_{3}roman_KCuF start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Phys. Rev. Lett 70, 4003 (1993).
- Lake, B. et al. Multispinon continua at zero and finite temperature in a near-ideal Heisenberg chain. Phys. Rev. Lett. 111, 137205 (2013).
- Enderle, M. et al. Two-spinon and four-spinon continuum in a frustrated ferromagnetic spin-1/2121/21 / 2 chain. Phys. Rev. Lett. 104, 237207 (2010).
- Spin-exchange dynamical structure factor of the S=1/2𝑆12S=1/2italic_S = 1 / 2 Heisenberg chain. Phys. Rev. Lett. 106, 157205 (2011).
- Schlappa, J. et al. Probing multi-spinon excitations outside of the two-spinon continuum in the antiferromagnetic spin chain cuprate Sr2CuO3subscriptSr2subscriptCuO3\mathrm{Sr}_{2}\mathrm{CuO}_{3}roman_Sr start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_CuO start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Nat. Commun. 9, 5394 (2018).
- Kohno, M. Dynamically dominant excitations of string solutions in the spin-1/2121/21 / 2 antiferromagnetic Heisenberg chain in a magnetic field. Phys. Rev. Lett. 102, 037203 (2009).
- Wang, Z. et al. Experimental observation of Bethe strings. Nature 554, 219–223 (2018).
- Wang, Z. et al. Quantum critical dynamics of a Heisenberg-Ising chain in a longitudinal field: Many-body strings versus fractional excitations. Phys. Rev. Lett. 123, 067202 (2019).
- Surprises on the way from one- to two-dimensional quantum magnets: The ladder materials. Science 271, 618 (1996).
- Haldane, F. D. M. Continuum dynamics of the 1-D Heisenberg antiferromagnet: Identification with the O(3) nonlinear sigma model. Phys. Lett. A 93, 464–468 (1983).
- Schmidiger, D. et al. Symmetric and asymmetric excitations of a strong-leg quantum spin ladder. Phys. Rev. B 88, 094411 (2013).
- Quantum magnets with weakly confined spinons: Multiple length scales and quantum impurities. Phys. Rev. B 80, 024411 (2009).
- Cheng, J.-Q. et al. Fractional and composite excitations of antiferromagnetic quantum spin trimer chains. npj Quantum Mater. 7, 1–11 (2022).
- Matsuda, M. et al. Magnetic excitations from the linear Heisenberg antiferromagnetic spin trimer system A3Cu3(PO4)4subscript𝐴3subscriptCu3subscriptsubscriptPO44{A}_{3}\mathrm{Cu}_{3}{(\mathrm{P}{\mathrm{O}}_{4})}_{4}italic_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Cu start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( roman_PO start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT (A=CaACa\mathrm{A}=\mathrm{Ca}roman_A = roman_Ca,SrSr\mathrm{Sr}roman_Sr, and PbPb\mathrm{Pb}roman_Pb). Phys. Rev. B 71, 144411 (2005).
- Drillon, M. et al. 1D ferrimagnetism in copper(ii) trimetric chains: Specific heat and magnetic behavior of A3Cu3(PO4)4subscript𝐴3𝐶subscript𝑢3subscript𝑃subscript𝑂44A_{3}Cu_{3}(PO_{4})_{4}italic_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT italic_C italic_u start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( italic_P italic_O start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT with A=Ca,Sr𝐴𝐶𝑎𝑆𝑟A=Ca,Sritalic_A = italic_C italic_a , italic_S italic_r. J. Magn. Magn. Mater. 128, 83–92 (1993).
- Long-range magnetic ordering of s= 1/2 linear trimers in A3Cu3(PO4)4subscript𝐴3subscriptCu3subscriptsubscriptPO44{A}_{3}\mathrm{Cu}_{3}{(\mathrm{P}{\mathrm{O}}_{4})}_{4}italic_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Cu start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( roman_PO start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT (A=CaACa\mathrm{A}=\mathrm{Ca}roman_A = roman_Ca,SrSr\mathrm{Sr}roman_Sr, PbPb\mathrm{Pb}roman_Pb). J. Solid State Chem. 178, 709–714 (2005).
- Low-energy structure of the homometallic intertwining double-chain ferrimagnets A3Cu3(PO4)4subscript𝐴3subscriptCu3subscriptsubscriptPO44{A}_{3}\mathrm{Cu}_{3}{(\mathrm{P}{\mathrm{O}}_{4})}_{4}italic_A start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Cu start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT ( roman_PO start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT (A=Ca,Sr,Pb)ACaSrPb(\mathrm{A}=\mathrm{Ca},\mathrm{Sr},\mathrm{Pb})( roman_A = roman_Ca , roman_Sr , roman_Pb ). Phys. Rev. B 76, 014409 (2007).
- Topology of many-body edge and extended quantum states in an open spin chain: 1/3 plateau, Kosterlitz-Thouless transition, and Luttinger liquid. Phys. Rev. B 102, 035137 (2020).
- Ground-state phase diagram and thermodynamics of coupled trimer chains. Phys. Rev. B 105, 134423 (2022).
- Magnetic excitation in interacting spin trimer systems investigated by extended spin-wave theory. J. Phys. Soc. Jpn. 81, 094712 (2012).
- Shen, Y. et al. Emergence of spinons in layered trimer Iridate Ba4Ir3O10subscriptBa4subscriptIr3subscriptO10{\mathrm{Ba}}_{4}{\mathrm{Ir}}_{3}{\mathrm{O}}_{10}roman_Ba start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT roman_Ir start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_O start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT. Phys. Rev. Lett. 129, 207201 (2022).
- Bera, A. K. et al. Emergent many-body composite excitations of interacting spin-1/2 trimers. Nat. Commun. 13, 6888 (2022).
- Anomalous high-energy spin excitations in the High-Tcsubscript𝑇𝑐{T}_{c}italic_T start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT superconductor-parent antiferromagnet La2CuO4subscriptLa2subscriptCuO4\mathrm{La}_{2}\mathrm{CuO}_{4}roman_La start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_CuO start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT. Phys. Rev. Lett. 105, 247001 (2010).
- Zhou, K.-J. et al. Persistent high-energy spin excitations in iron-pnictide superconductors. Nat. Commun. 4, 1470 (2013).
- Ishii, K. et al. High-energy spin and charge excitations in electron-doped copper oxide superconductors. Nat. Commun. 5, 3714 (2014).
- Wakimoto, S. et al. High-energy magnetic excitations in overdoped La2−xSrxCuO4subscriptLa2𝑥subscriptSr𝑥subscriptCuO4\mathrm{La}_{2-x}\mathrm{Sr}_{x}\mathrm{CuO}_{4}roman_La start_POSTSUBSCRIPT 2 - italic_x end_POSTSUBSCRIPT roman_Sr start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT roman_CuO start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT studied by neutron and resonant inelastic X-ray scattering. Phys. Rev. B 91, 184513 (2015).
- Song, Y. et al. High-energy magnetic excitations from heavy quasiparticles in CeCu2Si2subscriptCeCu2subscriptSi2\mathrm{CeCu}_{2}\mathrm{Si}_{2}roman_CeCu start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_Si start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. npj Quantum Mater. 6, 60 (2021).
- Shao, H. et al. Nearly deconfined spinon excitations in the square-lattice spin-1/2121/21 / 2 Heisenberg antiferromagnet. Phys. Rev. X 7, 041072 (2017).
- Dalla Piazza, B. et al. Fractional excitations in the square-lattice quantum antiferromagnet. Nat. Phys. 11, 62–68 (2015).
- Spectral evolution of the s=12𝑠12s=\frac{1}{2}italic_s = divide start_ARG 1 end_ARG start_ARG 2 end_ARG antiferromagnetic Heisenberg model: From one to two dimensions. Phys. Rev. B 108, 224418 (2023).
- Magnon, doublon and quarton excitations in 2D trimerized Heisenberg models. arXiv 2401.00376 (2023).
- White, S. R. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69, 2863–2866 (1992).
- Real-time evolution using the density matrix renormalization group. Phys. Rev. Lett. 93, 076401 (2004).
- Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326, 96 – 192 (2011).
- Haegeman, J. et al. Time-dependent variational principle for quantum lattices. Phys. Rev. Lett. 107, 070601 (2011).
- Unifying time evolution and optimization with matrix product states. Phys. Rev. B 94, 165116 (2016).
- Cluster expansion for the self-energy: A simple many-body method for interpreting the photoemission spectra of correlated fermi systems. Phys. Rev. B 48, 418–425 (1993).
- Spectral weight of the hubbard model through cluster perturbation theory. Phys. Rev. Lett. 84, 522–525 (2000).
- Quantum cluster theories. Rev. Mod. Phys. 77, 1027–1080 (2005).
- Deconfinement of spinons in frustrated spin systems: Spectral perspective. Phys. Rev. B 98, 134410 (2018).
- Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008).
- Laflorencie, N. Quantum entanglement in condensed matter systems. Phys. Rep. 646, 1–59 (2016). Quantum entanglement in condensed matter systems.
- Multipartite entanglement in an XXZ spin chain with Dzyaloshinskii–Moriya interaction and quantum phase transition. Quantum Inf. Process. 16, 1–20 (2017).
- Symmetry-resolved entanglement in many-body systems. Phys. Rev. Lett. 120, 200602 (2018).
- Multipartite entanglement, quantum coherence, and quantum criticality in triangular and Sierpiński fractal lattices. Phys. Rev. E 97, 062134 (2018).
- Kunkel, P. et al. Detecting entanglement structure in continuous many-body quantum systems. Phys. Rev. Lett. 128, 020402 (2022).
- Magnetization plateaus in spin chains: “Haldane gap” for half-integer spins. Phys. Rev. Lett. 78, 1984–1987 (1997).
- Quantum magnetization plateaux of an anisotropic ferrimagnetic spin chain. Phys. Rev. B 65, 214403 (2002).
- Parity effects in the scaling of block entanglement in gapless spin chains. Phys. Rev. Lett. 104, 095701 (2010).
- Rényi entanglement entropy of critical SU(N)SU𝑁\mathrm{SU}(N)roman_SU ( italic_N ) spin chains. Phys. Rev. B 92, 054411 (2015).
- Gapless to gapless phase transitions in quantum spin chains. Phys. Rev. B 105, 014435 (2022).
- Takayoshi, S. et al. Phase transitions and spin dynamics of the quasi-one dimensional Ising-like antiferromagnet BaCo22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTV22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTO88{}_{8}start_FLOATSUBSCRIPT 8 end_FLOATSUBSCRIPT in a longitudinal magnetic field (2023). eprint 2302.03833.
- Wang, Z. et al. From confined spinons to emergent fermions: Observation of elementary magnetic excitations in a transverse-field ising chain. Phys. Rev. B 94, 125130 (2016).
- Magnetic and dielectric properties of one-dimensional array of S=1/2𝑆12S=1/2italic_S = 1 / 2 linear trimer system Na2Cu3Ge4O12subscriptNa2subscriptCu3subscriptGe4subscriptO12\mathrm{Na}_{2}\mathrm{Cu}_{3}\mathrm{Ge}_{4}\mathrm{O}_{12}roman_Na start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_Cu start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT roman_Ge start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT roman_O start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT. J. Appl. Phys. 115, 17E125 (2014).
- Rüegg, C. et al. Bose–Einste in condensation of the triplet states in the magnetic insulator TlCuCl3subscriptTlCuCl3\mathrm{TlCuCl}_{3}roman_TlCuCl start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. Nature 423, 62–65 (2003).
- Bose–Einstein condensation in magnetic insulators. Nat. Phys. 4, 198–204 (2008).
- Bose-Einstein condensation in quantum magnets. Rev. Mod. Phys. 86, 563 (2014).
- Magnon Bose–Einstein condensation and superconductivity in a frustrated kondo lattice. Proc. Nat. Acad. Sci. 117, 20462–20467 (2020).
- Spectral functions in one-dimensional quantum systems at finite temperature using the density matrix renormalization group. Phys. Rev. B 79, 245101 (2009).
- Dynamic structure factor of the spin-1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG XXZ chain in a transverse field. Phys. Rev. B 94, 085136 (2016).
- Paeckel, S. et al. Time-evolution methods for matrix-product states. Ann. Phys. 411, 167998 (2019).
- Dynamical signatures of quasiparticle interactions in quantum spin chains. Phys. Rev. Lett. 125, 187201 (2020).
- Dynamical signatures of symmetry-broken and liquid phases in an s𝑠sitalic_s = 1212\frac{1}{2}divide start_ARG 1 end_ARG start_ARG 2 end_ARG Heisenberg antiferromagnet on the triangular lattice. Phys. Rev. B 108, L220401 (2023).
- The ITensor Software Library for Tensor Network Calculations. SciPost Phys. Codebases 4 (2022).
- Phase diagram and magnetic excitations of J1−J3subscript𝐽1subscript𝐽3{J}_{1}-{J}_{3}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_J start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT Heisenberg model on the square lattice. Phys. Rev. B 106, 125129 (2022).
- Spin dynamics and continuum spectra of the honeycomb J1−J2subscript𝐽1subscript𝐽2{J}_{1}\text{$-$}{J}_{2}italic_J start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - italic_J start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT antiferromagnetic Heisenberg model. Phys. Rev. B 105, 174403 (2022).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.