Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Leptonic neutral-current probes in a short-distance DUNE-like setup (2402.00114v3)

Published 31 Jan 2024 in hep-ph and hep-ex

Abstract: Precision measurements of neutrino-electron scattering may provide a viable way to test the non-minimal form of the charged and neutral current weak interactions within a hypothetical near-detector setup for the Deep Underground Neutrino Experiment (DUNE). Although low-statistics, these processes are clean and provide information complementing the results derived from oscillation studies. They could shed light on the scale of neutrino mass generation in low-scale seesaw schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (79)
  1. T. Kajita, “Nobel Lecture: Discovery of atmospheric neutrino oscillations,” Rev.Mod.Phys. 88 (2016) 030501.
  2. A. B. McDonald, “Nobel Lecture: The Sudbury Neutrino Observatory: Observation of flavor change for solar neutrinos,” Rev.Mod.Phys. 88 (2016) 030502.
  3. COHERENT Collaboration, D. Akimov et al., “Observation of Coherent Elastic Neutrino-Nucleus Scattering,” Science 357 no. 6356, (2017) 1123–1126, arXiv:1708.01294 [nucl-ex].
  4. COHERENT Collaboration, D. Akimov et al., “COHERENT Collaboration data release from the first observation of coherent elastic neutrino-nucleus scattering,” arXiv:1804.09459 [nucl-ex].
  5. D. Z. Freedman, “Coherent Neutrino Nucleus Scattering as a Probe of the Weak Neutral Current,” Phys. Rev. D 9 (1974) 1389–1392.
  6. A. Drukier and L. Stodolsky, “Principles and Applications of a Neutral Current Detector for Neutrino Physics and Astronomy,” Phys. Rev. D 30 (1984) 2295.
  7. J. Schechter and J. W. F. Valle, “Neutrino Masses in SU(2) x U(1) Theories,” Phys.Rev.D 22 (1980) 2227.
  8. J. Schechter and J. W. F. Valle, “Neutrino Decay and Spontaneous Violation of Lepton Number,” Phys.Rev.D 25 (1982) 774.
  9. J. W. F. Valle, “Resonant Oscillations of Massless Neutrinos in Matter,” Phys.Lett. B199 (1987) 432–436.
  10. H. Nunokawa et al., “Resonant conversion of massless neutrinos in supernovae,” Phys.Rev. D54 (1996) 4356–4363.
  11. D. Grasso, H. Nunokawa, and J. W. F. Valle, “Pulsar velocities without neutrino mass,” Phys.Rev.Lett. 81 (1998) 2412–2415.
  12. R. Mohapatra and J. W. F. Valle, “Neutrino Mass and Baryon Number Nonconservation in Superstring Models,” vol. 34, p. 1642. 1986.
  13. M. Gonzalez-Garcia and J. W. F. Valle, “Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models,” Phys.Lett. B216 (1989) 360–366.
  14. E. K. Akhmedov et al., “Left-right symmetry breaking in NJL approach,” Phys.Lett.B 368 (1996) 270–280, arXiv:hep-ph/9507275 [hep-ph].
  15. E. K. Akhmedov et al., “Dynamical left-right symmetry breaking,” Phys.Rev.D 53 (1996) 2752–2780, arXiv:hep-ph/9509255 [hep-ph].
  16. M. Malinsky, J. Romao, and J. W. F. Valle, “Novel supersymmetric SO(10) seesaw mechanism,” Phys.Rev.Lett. 95 (2005) 161801, arXiv:hep-ph/0506296 [hep-ph].
  17. F. Escrihuela et al., “On the description of nonunitary neutrino mixing,” Phys.Rev. D92 (2015) 053009, arXiv:1503.08879 [hep-ph].
  18. F. Escrihuela, D. Forero, O. Miranda, M. Tórtola, and J. W. F. Valle, “Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study,” New J.Phys. 19 (2017) 093005, arXiv:1612.07377 [hep-ph].
  19. C. S. Fong, H. Minakata, and H. Nunokawa, “A framework for testing leptonic unitarity by neutrino oscillation experiments,” JHEP 02 (2017) 114, arXiv:1609.08623 [hep-ph].
  20. S.-F. Ge, P. Pasquini, M. Tortola, and J. W. F. Valle, “Measuring the leptonic CP phase in neutrino oscillations with nonunitary mixing,” Phys.Rev. D95 (2017) 033005, arXiv:1605.01670 [hep-ph].
  21. O. Miranda and J. W. F. Valle, “Neutrino oscillations and the seesaw origin of neutrino mass,” Nucl.Phys. B908 (2016) 436–455, arXiv:1602.00864 [hep-ph].
  22. O. Miranda, M. Tortola, and J. W. F. Valle, “New ambiguity in probing CP violation in neutrino oscillations,” Phys.Rev.Lett. 117 (2016) 061804, arXiv:1604.05690 [hep-ph].
  23. C. S. Fong, H. Minakata, and H. Nunokawa, “Non-unitary evolution of neutrinos in matter and the leptonic unitarity test,” JHEP 02 (2019) 015, arXiv:1712.02798 [hep-ph].
  24. L. S. Miranda, P. Pasquini, U. Rahaman, and S. Razzaque, “Searching for non-unitary neutrino oscillations in the present T2K and NOν𝜈\nuitalic_νA data,” Eur. Phys. J. C 81 no. 5, (2021) 444, arXiv:1911.09398 [hep-ph].
  25. O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tórtola, and J. W. F. Valle, “Future CEvNS experiments as probes of lepton unitarity and light-sterile neutrinos,” Phys. Rev. D 102 (2020) 113014, arXiv:2008.02759 [hep-ph].
  26. I. Martinez-Soler and H. Minakata, “Measuring tau neutrino appearance probability via unitarity,” Phys. Rev. D 104 no. 9, (2021) 093006, arXiv:2109.06933 [hep-ph].
  27. U. Rahaman and S. Razzaque, “Non-Unitary Neutrino Mixing in the NOν𝜈\nuitalic_νA Near Detector Data,” Universe 8 no. 4, (2022) 238, arXiv:2108.11783 [hep-ph].
  28. C. Soumya, “Probing nonunitary neutrino mixing via long-baseline neutrino oscillation experiments based at J-PARC,” Phys. Rev. D 105 no. 1, (2022) 015012, arXiv:2104.04315 [hep-ph].
  29. D. Kaur, N. R. K. Chowdhury, and U. Rahaman, “Effect of non-unitary mixing on the mass hierarchy and CP violation determination at the Protvino to Orca experiment,” arXiv:2110.02917 [hep-ph].
  30. Y. Wang and S. Zhou, “Non-unitary leptonic flavor mixing and CP violation in neutrino-antineutrino oscillations,” Phys. Lett. B 824 (2022) 136797, arXiv:2109.13622 [hep-ph].
  31. S. S. Chatterjee, O. G. Miranda, M. Tórtola, and J. W. F. Valle, “Nonunitarity of the lepton mixing matrix at the European Spallation Source,” Phys. Rev. D 106 no. 7, (2022) 075016, arXiv:2111.08673 [hep-ph].
  32. S. Gariazzo, P. Martínez-Miravé, O. Mena, S. Pastor, and M. Tórtola, “Non-unitary three-neutrino mixing in the early Universe,” JCAP 03 (2023) 046, arXiv:2211.10522 [hep-ph].
  33. D. Aloni and A. Dery, “Revisiting leptonic non-unitarity in light of FASERν𝜈\nuitalic_ν,” arXiv:2211.09638 [hep-ph].
  34. S. Sahoo, S. Das, A. Kumar, and S. K. Agarwalla, “Constraining non-unitary neutrino mixing using matter effects in atmospheric neutrinos at INO-ICAL,” arXiv:2309.16942 [hep-ph].
  35. J. M. Celestino-Ramírez, F. J. Escrihuela, L. J. Flores, and O. G. Miranda, “Testing the non-unitarity of the leptonic mixing matrix at FASER,” arXiv:2309.00116 [hep-ph].
  36. O. G. Miranda, D. K. Papoulias, O. Sanders, M. Tórtola, and J. W. F. Valle, “Low-energy probes of sterile neutrino transition magnetic moments,” JHEP 12 (2021) 191, arXiv:2109.09545 [hep-ph].
  37. T. Schwetz and A. Segarra, “T violation in nonstandard neutrino oscillation scenarios,” Phys. Rev. D 105 no. 5, (2022) 055001, arXiv:2112.08801 [hep-ph].
  38. T. Schwetz and A. Segarra, “Model-Independent Test of T Violation in Neutrino Oscillations,” Phys. Rev. Lett. 128 no. 9, (2022) 091801, arXiv:2106.16099 [hep-ph].
  39. J. Tang, S. Vihonen, and Y. Xu, “Precision measurements and tau neutrino physics in a future accelerator neutrino experiment,” Commun. Theor. Phys. 74 no. 3, (2022) 035201, arXiv:2108.11107 [hep-ph].
  40. J. Arrington et al., “Physics Opportunities for the Fermilab Booster Replacement,” arXiv:2203.03925 [hep-ph].
  41. F. Capozzi, C. Giunti, and C. A. Ternes, “Improved sensitivities of ESSν𝜈\nuitalic_νSB from a two-detector fit,” JHEP 04 (2023) 130, arXiv:2302.07154 [hep-ph].
  42. S. R. Soleti, P. Coloma, J. J. G. Cadenas, and A. Cabrera, “Search for Hidden Neutrinos at the European Spallation Source: the SHiNESS experiment,” arXiv:2311.18509 [hep-ex].
  43. O. Miranda et al., “Exploring the Potential of Short-Baseline Physics at Fermilab,” Phys.Rev. D97 (2018) 095026, arXiv:1802.02133 [hep-ph].
  44. P. Coloma, J. López-Pavón, S. Rosauro-Alcaraz, and S. Urrea, “New physics from oscillations at the DUNE near detector, and the role of systematic uncertainties,” JHEP 08 (2021) 065, arXiv:2105.11466 [hep-ph].
  45. P. de Salas et al., “2020 global reassessment of the neutrino oscillation picture,” JHEP 02 (2021) 071, arXiv:2006.11237 [hep-ph].
  46. M. Blennow, P. Coloma, E. Fernandez-Martinez, J. Hernandez-Garcia, and J. Lopez-Pavon, “Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions,” JHEP 04 (2017) 153, arXiv:1609.08637 [hep-ph].
  47. Particle Data Group Collaboration, R. L. Workman and Others, “Review of Particle Physics,” PTEP 2022 (2022) 083C01.
  48. D. Forero, C. Giunti, C. Ternes, and M. Tortola, “Non-unitary neutrino mixing in short and long-baseline experiments,” arXiv:2103.01998 [hep-ph].
  49. Z. Hu, J. Ling, J. Tang, and T. Wang, “Global oscillation data analysis on the 3⁢ν3𝜈3\nu3 italic_ν mixing without unitarity,” JHEP 01 (2021) 124, arXiv:2008.09730 [hep-ph].
  50. S. A. R. Ellis, K. J. Kelly, and S. W. Li, “Current and Future Neutrino Oscillation Constraints on Leptonic Unitarity,” JHEP 12 (2020) 068, arXiv:2008.01088 [hep-ph].
  51. S. K. Agarwalla, S. Das, A. Giarnetti, and D. Meloni, “Model-independent constraints on non-unitary neutrino mixing from high-precision long-baseline experiments,” JHEP 07 (2022) 121, arXiv:2111.00329 [hep-ph].
  52. D. Bryman, V. Cirigliano, A. Crivellin, and G. Inguglia, “Testing Lepton Flavor Universality with Pion, Kaon, Tau, and Beta Decays,” Ann.Rev.Nucl.Part.Sci. 72 (2022) 69–91, arXiv:2111.05338 [hep-ph].
  53. F. J. Escrihuela, L. J. Flores, and O. G. Miranda, “Neutrino counting experiments and non-unitarity from LEP and future experiments,” Phys. Lett. B 802 (2020) 135241, arXiv:1907.12675 [hep-ph].
  54. D. Forero, S. Morisi, M. Tortola, and J. W. F. Valle, “Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw,” JHEP 09 (2011) 142, arXiv:1107.6009 [hep-ph].
  55. M. Lindner, M. Platscher, and F. S. Queiroz, “A Call for New Physics : The Muon Anomalous Magnetic Moment and Lepton Flavor Violation,” Phys. Rept. 731 (2018) 1–82, arXiv:1610.06587 [hep-ph].
  56. M. Blennow, E. Fernández-Martínez, J. Hernández-García, J. López-Pavón, X. Marcano, and D. Naredo-Tuero, “Bounds on lepton non-unitarity and heavy neutrino mixing,” JHEP 08 (2023) 030, arXiv:2306.01040 [hep-ph].
  57. J. Bernabeu et al., “Lepton Flavor Nonconservation at High-Energies in a Superstring Inspired Standard Model,” Phys.Lett.B 187 (1987) 303–308.
  58. M. Gonzalez-Garcia and J. W. F. Valle, “Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models,” Phys.Lett.B 216 (1989) 360–366.
  59. A. Abada, M. E. Krauss, W. Porod, F. Staub, A. Vicente, and C. Weiland, “Lepton flavor violation in low-scale seesaw models: SUSY and non-SUSY contributions,” JHEP 11 (2014) 048, arXiv:1408.0138 [hep-ph].
  60. C. Hagedorn, J. Kriewald, J. Orloff, and A. M. Teixeira, “Flavour and CP symmetries in the inverse seesaw,” Eur. Phys. J. C 82 no. 3, (2022) 194, arXiv:2107.07537 [hep-ph].
  61. M. Dittmar, A. Santamaria, M. Gonzalez-Garcia, and J. W. F. Valle, “Production Mechanisms and Signatures of Isosinglet Neutral Heavy Leptons in Z0superscript𝑍0Z^{0}italic_Z start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT Decays,” Nucl.Phys.B 332 (1990) 1–19.
  62. M. Gonzalez-Garcia, A. Santamaria, and J. W. F. Valle, “Isosinglet Neutral Heavy Lepton Production in Z𝑍Zitalic_Z Decays and Neutrino Mass,” Nucl.Phys.B 342 (1990) 108–126.
  63. A. Atre, T. Han, S. Pascoli, and B. Zhang, “The Search for Heavy Majorana Neutrinos,” JHEP 05 (2009) 030, arXiv:0901.3589 [hep-ph].
  64. J. Aguilar-Saavedra et al., “Flavour in heavy neutrino searches at the LHC,” Phys.Rev.D 85 (2012) 091301, arXiv:1203.5998 [hep-ph].
  65. S. Das, F. Deppisch, O. Kittel, and J. W. F. Valle, “Heavy Neutrinos and Lepton Flavour Violation in Left-Right Symmetric Models at the LHC,” Phys.Rev.D 86 (2012) 055006, arXiv:1206.0256 [hep-ph].
  66. F. F. Deppisch, N. Desai, and J. W. F. Valle, “Is charged lepton flavor violation a high energy phenomenon?,” Phys.Rev.D 89 (2014) 051302, arXiv:1308.6789 [hep-ph].
  67. S. Antusch and O. Fischer, “Testing sterile neutrino extensions of the Standard Model at future lepton colliders,” JHEP 05 (2015) 053, arXiv:1502.05915 [hep-ph].
  68. F. F. Deppisch, P. S. Bhupal Dev, and A. Pilaftsis, “Neutrinos and Collider Physics,” New J. Phys. 17 no. 7, (2015) 075019, arXiv:1502.06541 [hep-ph].
  69. M. Hirsch and Z. S. Wang, “Heavy neutral leptons at ANUBIS,” Phys. Rev. D 101 no. 5, (2020) 055034, arXiv:2001.04750 [hep-ph].
  70. G. Cottin et al., “Long-lived heavy neutral leptons with a displaced shower signature at CMS,” JHEP 02 (2023) 011, arXiv:2210.17446 [hep-ph].
  71. G. Chauhan, P. S. B. Dev, I. Dubovyk, B. Dziewit, W. Flieger, K. Grzanka, J. Gluza, B. Karmakar, and S. Zieba, “Phenomenology of Lepton Masses and Mixing with Discrete Flavor Symmetries, ,” arXiv:2310.20681 [hep-ph].
  72. A. Batra, P. Bharadwaj, S. Mandal, R. Srivastava, and J. W. F. Valle, “Phenomenology of the simplest linear seesaw mechanism,” JHEP 07 (2023) 221, arXiv:2305.00994 [hep-ph].
  73. S. Alekhin et al., “A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case,” Rept. Prog. Phys. 79 no. 12, (2016) 124201, arXiv:1504.04855 [hep-ph].
  74. CMS Collaboration, “Search for heavy Majorana neutrinos in the same-sign dilepton channel in proton-proton collisions at s𝑠\sqrt{s}square-root start_ARG italic_s end_ARG = 13 TeV,”.
  75. ATLAS Collaboration, M. Aaboud et al., “Search for heavy Majorana or Dirac neutrinos and right-handed W𝑊Witalic_W gauge bosons in final states with two charged leptons and two jets at s=13𝑠13\sqrt{s}=13square-root start_ARG italic_s end_ARG = 13 TeV with the ATLAS detector,” JHEP 01 (2019) 016, arXiv:1809.11105 [hep-ex].
  76. J. Alimena et al., “Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider,” J. Phys. G 47 no. 9, (2020) 090501, arXiv:1903.04497 [hep-ex].
  77. CMS Collaboration, A. Tumasyan et al., “Search for long-lived heavy neutral leptons with displaced vertices in proton-proton collisions at ss\sqrt{\mathrm{s}}square-root start_ARG roman_s end_ARG =13 TeV,” JHEP 07 (2022) 081, arXiv:2201.05578 [hep-ex].
  78. A. M. Abdullahi et al., “The present and future status of heavy neutral leptons,” J. Phys. G 50 no. 2, (2023) 020501, arXiv:2203.08039 [hep-ph].
  79. CMS Collaboration, “Search for long-lived heavy neutral leptons with lepton flavour conserving or violating decays to a jet and a charged lepton,” arXiv:2312.07484 [hep-ex].
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.