Microscopic Model for Fractional Quantum Hall Nematics (2401.17352v3)
Abstract: Geometric fluctuations of the density mode in a fractional quantum Hall (FQH) state can give rise to a nematic FQH phase, a topological state with a spontaneously broken rotational symmetry. While experiments on FQH states in the second Landau level have reported signatures of putative FQH nematics in anisotropic transport, a realistic model for this state has been lacking. We show that the standard model of particles in the lowest Landau level interacting via the Coulomb potential realizes the FQH nematic transition, which is reached by a progressive reduction of the strength of the shortest-range Haldane pseudopotential. Using exact diagonalization and variational wave functions, we demonstrate that the FQH nematic transition occurs when the system's neutral gap closes in the long-wavelength limit while the charge gap remains open. We confirm the symmetry-breaking nature of the transition by demonstrating the existence of a "circular moat" potential in the manifold of states with broken rotational symmetry, while its geometric character is revealed through the strong fluctuations of the nematic susceptibility and Hall viscosity.
- M. Mulligan, C. Nayak, and S. Kachru, Isotropic to anisotropic transition in a fractional quantum Hall state, Phys. Rev. B 82, 085102 (2010).
- Y. You, G. Y. Cho, and E. Fradkin, Theory of nematic fractional quantum Hall states, Phys. Rev. X 4, 041050 (2014).
- D. C. Tsui, H. L. Stormer, and A. C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48, 1559 (1982).
- A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Charge density wave in two-dimensional electron liquid in weak magnetic field, Phys. Rev. Lett. 76, 499 (1996).
- P. K. Lam and S. M. Girvin, Liquid-solid transition and the fractional quantum-Hall effect, Phys. Rev. B 30, 473 (1984).
- D. Levesque, J. J. Weis, and A. H. MacDonald, Crystallization of the incompressible quantum-fluid state of a two-dimensional electron gas in a strong magnetic field, Phys. Rev. B 30, 1056 (1984).
- R. Moessner and J. T. Chalker, Exact results for interacting electrons in high Landau levels, Phys. Rev. B 54, 5006 (1996).
- L. Balents, Spatially ordered fractional quantum Hall states, Europhysics Letters 33, 291 (1996).
- E. Fradkin and S. A. Kivelson, Liquid-crystal phases of quantum Hall systems, Phys. Rev. B 59, 8065 (1999).
- S. A. Parameswaran and B. E. Feldman, Quantum Hall valley nematics, Journal of Physics: Condensed Matter 31, 273001 (2019).
- K. Eng, R. N. McFarland, and B. E. Kane, Integer quantum Hall effect on a six-valley hydrogen-passivated silicon (111) surface, Phys. Rev. Lett. 99, 016801 (2007).
- R. B. Laughlin, Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett. 50, 1395 (1983).
- G. Moore and N. Read, Nonabelions in the fractional quantum Hall effect, Nucl. Phys. B 360, 362 (1991).
- S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Collective-excitation gap in the fractional quantum Hall effect, Phys. Rev. Lett. 54, 581 (1985).
- S. M. Girvin, A. H. MacDonald, and P. M. Platzman, Magneto-roton theory of collective excitations in the fractional quantum Hall effect, Phys. Rev. B 33, 2481 (1986).
- F. D. M. Haldane, Geometrical description of the fractional quantum Hall effect, Phys. Rev. Lett. 107, 116801 (2011).
- T. Can, M. Laskin, and P. Wiegmann, Fractional quantum Hall effect in a curved space: Gravitational anomaly and electromagnetic response, Phys. Rev. Lett. 113, 046803 (2014).
- F. Ferrari and S. Klevtsov, FQHE on curved backgrounds, free fields and large N, Journal of High Energy Physics 2014, 86 (2014).
- A. Gromov and A. G. Abanov, Density-curvature response and gravitational anomaly, Phys. Rev. Lett. 113, 266802 (2014).
- B. Bradlyn and N. Read, Low-energy effective theory in the bulk for transport in a topological phase, Phys. Rev. B 91, 125303 (2015).
- Y. You, G. Y. Cho, and E. Fradkin, Nematic quantum phase transition of composite Fermi liquids in half-filled Landau levels and their geometric response, Phys. Rev. B 93, 205401 (2016).
- A. Gromov and D. T. Son, Bimetric theory of fractional quantum Hall states, Phys. Rev. X 7, 041032 (2017).
- K. Musaelian and R. Joynt, Broken rotation symmetry in the fractional quantum Hall system, J. Phys.: Condens. Matter 8, L105 (1996).
- B. Yang, Microscopic theory for nematic fractional quantum Hall effect, Phys. Rev. Res. 2, 033362 (2020).
- R. E. Prange and S. M. Girvin, eds., The Quantum Hall Effect (Springer-Verlag New York, 1987).
- F. D. M. Haldane and E. H. Rezayi, Finite-size studies of the incompressible state of the fractionally quantized Hall effect and its excitations, Phys. Rev. Lett. 54, 237 (1985a).
- E. H. Rezayi and F. D. M. Haldane, Off-diagonal long-range order in fractional quantum-Hall-effect states, Phys. Rev. Lett. 61, 1985 (1988).
- J. K. Jain and R. K. Kamilla, Composite fermions in the Hilbert space of the lowest electronic Landau level, Int. J. Mod. Phys. B 11, 2621 (1997).
- See Supplemental Material accompanying this paper, which includes further details of the calculations and supporting results.
- F. D. M. Haldane, Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states, Phys. Rev. Lett. 51, 605 (1983).
- X. G. Wen and A. Zee, Shift and spin vector: New topological quantum numbers for the Hall fluids, Phys. Rev. Lett. 69, 953 (1992).
- G. Fano, F. Ortolani, and E. Colombo, Configuration-interaction calculations on the fractional quantum Hall effect, Phys. Rev. B 34, 2670 (1986).
- R. H. Morf, N. d’Ambrumenil, and S. Das Sarma, Excitation gaps in fractional quantum Hall states: An exact diagonalization study, Phys. Rev. B 66, 075408 (2002).
- A. C. Balram and A. Wójs, Fractional quantum Hall effect at ν=2+4/9𝜈249\nu=2+4/9italic_ν = 2 + 4 / 9, Phys. Rev. Research 2, 032035 (2020).
- R. Morf, N. d’Ambrumenil, and B. I. Halperin, Microscopic wave functions for the fractional quantized Hall states at ν=25and27𝜈25and27\nu=\frac{2}{5}\mathrm{and}\frac{2}{7}italic_ν = divide start_ARG 2 end_ARG start_ARG 5 end_ARG roman_and divide start_ARG 2 end_ARG start_ARG 7 end_ARG, Phys. Rev. B 34, 3037 (1986).
- J. K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63, 199 (1989).
- R. K. Kamilla, X. G. Wu, and J. K. Jain, Excitons of composite fermions, Phys. Rev. B 54, 4873 (1996).
- A. C. Balram and S. Pu, Positions of the magnetoroton minima in the fractional quantum Hall effect, The European Physical Journal B 90, 124 (2017).
- F. D. M. Haldane and E. H. Rezayi, Periodic Laughlin-Jastrow wave functions for the fractional quantized Hall effect, Phys. Rev. B 31, 2529 (1985b).
- J. E. Avron, R. Seiler, and P. G. Zograf, Viscosity of quantum Hall fluids, Phys. Rev. Lett. 75, 697 (1995).
- F. D. M. Haldane, “Hall viscosity” and intrinsic metric of incompressible fractional Hall fluids, ArXiv e-prints (2009), arXiv:0906.1854 [cond-mat.str-el] .
- N. Read, Non-Abelian adiabatic statistics and Hall viscosity in quantum Hall states and px+ipysubscript𝑝𝑥𝑖subscript𝑝𝑦{p}_{x}+i{p}_{y}italic_p start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT + italic_i italic_p start_POSTSUBSCRIPT italic_y end_POSTSUBSCRIPT paired superfluids, Phys. Rev. B 79, 045308 (2009).
- See the Supplemental Material for detailed information about the calculations and results in the main text.
- A. C. Balram, A. Wójs, and J. K. Jain, State counting for excited bands of the fractional quantum Hall effect: Exclusion rules for bound excitons, Phys. Rev. B 88, 205312 (2013).
- J. K. Jain, A note contrasting two microscopic theories of the fractional quantum Hall effect, Indian Journal of Physics 88, 915 (2014).
- W. P. Su and Y. K. Wu, Collective excitation spectrum of the ν𝜈\nuitalic_ν=2/5 fractionally quantized Hall state, Phys. Rev. B 36, 7565 (1987).
- N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn, Quantum phases of vortices in rotating Bose-Einstein condensates, Phys. Rev. Lett. 87, 120405 (2001).
- N. Regnault and T. Jolicoeur, Quantum Hall fractions in rotating Bose-Einstein condensates, Phys. Rev. Lett. 91, 030402 (2003).
- N. Regnault and T. Jolicoeur, Parafermionic states in rotating Bose-Einstein condensates, Phys. Rev. B 76, 235324 (2007).
- A. Sharma, A. C. Balram, and J. K. Jain, Composite-fermion pairing at half-filled and quarter-filled lowest Landau level, Phys. Rev. B 109, 035306 (2024).
- T. Jolicoeur, Shape of the magnetoroton at ν=1/3𝜈13\nu=1/3italic_ν = 1 / 3 and ν=7/3𝜈73\nu=7/3italic_ν = 7 / 3 in real samples, Phys. Rev. B 95, 075201 (2017).
- DiagHam, https://www.nick-ux.org/diagham.
- B. A. Bernevig and F. D. M. Haldane, Model fractional quantum Hall states and Jack polynomials, Phys. Rev. Lett. 100, 246802 (2008a).
- B. A. Bernevig and F. D. M. Haldane, Generalized clustering conditions of Jack polynomials at negative Jack parameter α𝛼\alphaitalic_α, Phys. Rev. B 77, 184502 (2008b).
- N. Read and E. Rezayi, Beyond paired quantum Hall states: Parafermions and incompressible states in the first excited Landau level, Phys. Rev. B 59, 8084 (1999).
- S. He, S. H. Simon, and B. I. Halperin, Response function of the fractional quantized Hall state on a sphere. ii. exact diagonalization, Phys. Rev. B 50, 1823 (1994).
- Z. Liu, A. Gromov, and Z. Papić, Geometric quench and nonequilibrium dynamics of fractional quantum Hall states, Phys. Rev. B 98, 155140 (2018).
- P. Lévay, Berry phases for Landau Hamiltonians on deformed tori, Journal of Mathematical Physics 36, 2792 (1995).
- I. V. Tokatly and G. Vignale, Lorentz shear modulus of fractional quantum Hall states, Journal of Physics: Condensed Matter 21, 275603 (2009).
- M. Fremling, T. H. Hansson, and J. Suorsa, Hall viscosity of hierarchical quantum Hall states, Phys. Rev. B 89, 125303 (2014).
- S. Pu, M. Fremling, and J. K. Jain, Hall viscosity of composite fermions, Phys. Rev. Research 2, 013139 (2020).
- E. H. Rezayi, F. D. M. Haldane, and K. Yang, Charge-density-wave ordering in half-filled high Landau levels, Phys. Rev. Lett. 83, 1219 (1999).
- F. D. M. Haldane, E. H. Rezayi, and K. Yang, Spontaneous breakdown of translational symmetry in quantum hall systems: Crystalline order in high landau levels, Phys. Rev. Lett. 85, 5396 (2000).
- K. Yang, F. D. M. Haldane, and E. H. Rezayi, Wigner crystals in the lowest Landau level at low-filling factors, Phys. Rev. B 64, 081301 (2001).
- F. D. M. Haldane, Many-particle translational symmetries of two-dimensional electrons at rational Landau-level filling, Phys. Rev. Lett. 55, 2095 (1985).
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.