Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

WGAN-AFL: Seed Generation Augmented Fuzzer with Wasserstein-GAN (2401.16947v1)

Published 30 Jan 2024 in cs.CR

Abstract: The importance of addressing security vulnerabilities is indisputable, with software becoming crucial in sectors such as national defense and finance. Consequently, The security issues caused by software vulnerabilities cannot be ignored. Fuzz testing is an automated software testing technology that can detect vulnerabilities in the software. However, most previous fuzzers encounter challenges that fuzzing performance is sensitive to initial input seeds. In the absence of high-quality initial input seeds, fuzzers may expend significant resources on program path exploration, leading to a substantial decrease in the efficiency of vulnerability detection. To address this issue, we propose WGAN-AFL. By collecting high-quality testcases, we train a generative adversarial network (GAN) to learn their features, thereby obtaining high-quality initial input seeds. To overcome drawbacks like mode collapse and training instability inherent in GANs, we utilize the Wasserstein GAN (WGAN) architecture for training, further enhancing the quality of the generated seeds. Experimental results demonstrate that WGAN-AFL significantly outperforms the original AFL in terms of code coverage, new paths, and vulnerability discovery, demonstrating the effective enhancement of seed quality by WGAN-AFL.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.