Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Learning the stabilizer group of a Matrix Product State (2401.16481v1)

Published 29 Jan 2024 in quant-ph

Abstract: We present a novel classical algorithm designed to learn the stabilizer group -- namely the group of Pauli strings for which a state is a $\pm 1$ eigenvector -- of a given Matrix Product State (MPS). The algorithm is based on a clever and theoretically grounded biased sampling in the Pauli (or Bell) basis. Its output is a set of independent stabilizer generators whose total number is directly associated with the stabilizer nullity, notably a well-established nonstabilizer monotone. We benchmark our method on $T$-doped states randomly scrambled via Clifford unitary dynamics, demonstrating very accurate estimates up to highly-entangled MPS with bond dimension $\chi\sim 103$. Our method, thanks to a very favourable scaling $\mathcal{O}(\chi3)$, represents the first effective approach to obtain a genuine magic monotone for MPS, enabling systematic investigations of quantum many-body physics out-of-equilibrium.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. R. P. Feynman, International Journal of Theoretical Physics 21, 467 (1982).
  2. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
  3. P. Shor, in Proceedings 35th Annual Symposium on Foundations of Computer Science (1994) pp. 124–134.
  4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
  5. U. Schollwöck, Annals of Physics 326, 96 (2011), january 2011 Special Issue.
  6. J. Biamonte, “Lectures on Quantum Tensor Networks,”  (2020), arXiv:1912.10049 [quant-ph] .
  7. G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
  8. M. B. Hastings, Journal of Statistical Mechanics: Theory and Experiment 2007, P08024–P08024 (2007).
  9. D. Gottesman, “Stabilizer Codes and Quantum Error Correction,”  (1997).
  10. D. Gottesman, Phys. Rev. A 57, 127 (1998a).
  11. D. Gottesman, arXiv preprint arXiv:9807006  (1998b), 10.48550/ARXIV.QUANT-PH/9807006.
  12. S. Aaronson and D. Gottesman, Physical Review A 70 (2004), 10.1103/physreva.70.052328.
  13. J. Dehaene and B. De Moor, Physical Review A 68 (2003), 10.1103/physreva.68.042318.
  14. Z.-W. Liu and A. Winter, PRX Quantum 3, 020333 (2022).
  15. M. Howard and E. Campbell, Physical Review Letters 118 (2017), 10.1103/physrevlett.118.090501.
  16. E. Tirrito, P. S. Tarabunga, G. Lami, T. Chanda, L. Leone, S. F. E. Oliviero, M. Dalmonte, M. Collura,  and A. Hamma, “Quantifying non-stabilizerness through entanglement spectrum flatness,”  (2023), arXiv:2304.01175 [quant-ph] .
  17. D. Rattacaso, L. Leone, S. F. E. Oliviero,  and A. Hamma, “Stabilizer entropy dynamics after a quantum quench,”  (2023), arXiv:2304.13768 [quant-ph] .
  18. P. Niroula, C. D. White, Q. Wang, S. Johri, D. Zhu, C. Monroe, C. Noel,  and M. J. Gullans, “Phase transition in magic with random quantum circuits,”  (2023), arXiv:2304.10481 [quant-ph] .
  19. G. Lami and M. Collura, Phys. Rev. Lett. 131, 180401 (2023).
  20. T. Haug and L. Piroli, Physical Review B 107 (2023a), 10.1103/physrevb.107.035148.
  21. T. Haug and L. Piroli, Quantum 7, 1092 (2023b).
  22. P. S. Tarabunga, “Critical behaviours of non-stabilizerness in quantum spin chains,”  (2023), arXiv:2309.00676 [quant-ph] .
  23. S. Grewal, V. Iyer, W. Kretschmer,  and D. Liang, “Improved Stabilizer Estimation via Bell Difference Sampling,”  (2023), arXiv:2304.13915 [quant-ph] .
  24. J. Jiang and X. Wang, Physical Review Applied 19 (2023), 10.1103/physrevapplied.19.034052.
  25. A. Montanaro, “Learning stabilizer states by Bell sampling,”  (2017), arXiv:1707.04012 [quant-ph] .
  26. A. Anshu and S. Arunachalam, “A survey on the complexity of learning quantum states,”  (2023), arXiv:2305.20069 [quant-ph] .
  27. L. Leone, S. F. E. Oliviero,  and A. Hamma, “Learning t-doped stabilizer states,”  (2023), arXiv:2305.15398 [quant-ph] .
  28. D. Hangleiter and M. J. Gullans, “Bell sampling from quantum circuits,”  (2023), arXiv:2306.00083 [quant-ph] .
  29. E. M. Stoudenmire and S. R. White, New Journal of Physics 12, 055026 (2010).
  30. A. J. Ferris and G. Vidal, Phys. Rev. B 85, 165146 (2012).
  31. A. Chertkov, G. Ryzhakov, G. Novikov,  and I. Oseledets, “Optimization of Functions Given in the Tensor Train Format,”  (2022), arXiv:2209.14808 [math.NA] .
  32. C. Gidney, Quantum 5, 497 (2021).
  33. Wikipedia contributors, “Schatten norm — Wikipedia, the free encyclopedia,” https://en.wikipedia.org/w/index.php?title=Schatten_norm&oldid=1180861007 (2023), [Online; accessed 9-November-2023].
  34. J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.