Learning the stabilizer group of a Matrix Product State
Abstract: We present a novel classical algorithm designed to learn the stabilizer group -- namely the group of Pauli strings for which a state is a $\pm 1$ eigenvector -- of a given Matrix Product State (MPS). The algorithm is based on a clever and theoretically grounded biased sampling in the Pauli (or Bell) basis. Its output is a set of independent stabilizer generators whose total number is directly associated with the stabilizer nullity, notably a well-established nonstabilizer monotone. We benchmark our method on $T$-doped states randomly scrambled via Clifford unitary dynamics, demonstrating very accurate estimates up to highly-entangled MPS with bond dimension $\chi\sim 103$. Our method, thanks to a very favourable scaling $\mathcal{O}(\chi3)$, represents the first effective approach to obtain a genuine magic monotone for MPS, enabling systematic investigations of quantum many-body physics out-of-equilibrium.
- R. P. Feynman, International Journal of Theoretical Physics 21, 467 (1982).
- W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
- P. Shor, in Proceedings 35th Annual Symposium on Foundations of Computer Science (1994) pp. 124–134.
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
- U. Schollwöck, Annals of Physics 326, 96 (2011), january 2011 Special Issue.
- J. Biamonte, “Lectures on Quantum Tensor Networks,” (2020), arXiv:1912.10049 [quant-ph] .
- G. Vidal, Phys. Rev. Lett. 93, 040502 (2004).
- M. B. Hastings, Journal of Statistical Mechanics: Theory and Experiment 2007, P08024–P08024 (2007).
- D. Gottesman, “Stabilizer Codes and Quantum Error Correction,” (1997).
- D. Gottesman, Phys. Rev. A 57, 127 (1998a).
- D. Gottesman, arXiv preprint arXiv:9807006 (1998b), 10.48550/ARXIV.QUANT-PH/9807006.
- S. Aaronson and D. Gottesman, Physical Review A 70 (2004), 10.1103/physreva.70.052328.
- J. Dehaene and B. De Moor, Physical Review A 68 (2003), 10.1103/physreva.68.042318.
- Z.-W. Liu and A. Winter, PRX Quantum 3, 020333 (2022).
- M. Howard and E. Campbell, Physical Review Letters 118 (2017), 10.1103/physrevlett.118.090501.
- E. Tirrito, P. S. Tarabunga, G. Lami, T. Chanda, L. Leone, S. F. E. Oliviero, M. Dalmonte, M. Collura, and A. Hamma, “Quantifying non-stabilizerness through entanglement spectrum flatness,” (2023), arXiv:2304.01175 [quant-ph] .
- D. Rattacaso, L. Leone, S. F. E. Oliviero, and A. Hamma, “Stabilizer entropy dynamics after a quantum quench,” (2023), arXiv:2304.13768 [quant-ph] .
- P. Niroula, C. D. White, Q. Wang, S. Johri, D. Zhu, C. Monroe, C. Noel, and M. J. Gullans, “Phase transition in magic with random quantum circuits,” (2023), arXiv:2304.10481 [quant-ph] .
- G. Lami and M. Collura, Phys. Rev. Lett. 131, 180401 (2023).
- T. Haug and L. Piroli, Physical Review B 107 (2023a), 10.1103/physrevb.107.035148.
- T. Haug and L. Piroli, Quantum 7, 1092 (2023b).
- P. S. Tarabunga, “Critical behaviours of non-stabilizerness in quantum spin chains,” (2023), arXiv:2309.00676 [quant-ph] .
- S. Grewal, V. Iyer, W. Kretschmer, and D. Liang, “Improved Stabilizer Estimation via Bell Difference Sampling,” (2023), arXiv:2304.13915 [quant-ph] .
- J. Jiang and X. Wang, Physical Review Applied 19 (2023), 10.1103/physrevapplied.19.034052.
- A. Montanaro, “Learning stabilizer states by Bell sampling,” (2017), arXiv:1707.04012 [quant-ph] .
- A. Anshu and S. Arunachalam, “A survey on the complexity of learning quantum states,” (2023), arXiv:2305.20069 [quant-ph] .
- L. Leone, S. F. E. Oliviero, and A. Hamma, “Learning t-doped stabilizer states,” (2023), arXiv:2305.15398 [quant-ph] .
- D. Hangleiter and M. J. Gullans, “Bell sampling from quantum circuits,” (2023), arXiv:2306.00083 [quant-ph] .
- E. M. Stoudenmire and S. R. White, New Journal of Physics 12, 055026 (2010).
- A. J. Ferris and G. Vidal, Phys. Rev. B 85, 165146 (2012).
- A. Chertkov, G. Ryzhakov, G. Novikov, and I. Oseledets, “Optimization of Functions Given in the Tensor Train Format,” (2022), arXiv:2209.14808 [math.NA] .
- C. Gidney, Quantum 5, 497 (2021).
- Wikipedia contributors, “Schatten norm — Wikipedia, the free encyclopedia,” https://en.wikipedia.org/w/index.php?title=Schatten_norm&oldid=1180861007 (2023), [Online; accessed 9-November-2023].
- J. Watrous, The Theory of Quantum Information (Cambridge University Press, 2018).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.