Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

SN1987A constraints to BSM models with extra neutral bosons near the trapping regime: $U(1)_{L_μ-L_τ}$ model as an illustrative example (2401.16023v2)

Published 29 Jan 2024 in hep-ph

Abstract: New physics beyond the Standard Model (BSM) with an extra neutral boson can be constrained from the observation of SN1987A, since the production of this neutral boson in a supernova (SN) could accelerate the SN cooling and potentially lead to a period of the neutrino burst incompatible with the observation. The constraint to the model is formulated by the condition $L_{\rm NB}\leq 3\times 10{52}$ erg/s according to G. Raffelt with $L_{\rm NB}$ the luminosity of BSM neutral boson. Computing the above luminosity in the large coupling case, the so-called trapping regime, is non-trivial since the luminosity is a competition between the large production rate and the efficient absorption or decay rate of the neutral boson. We illustrate such a subtlety using $U(1){L\mu-L_\tau}$ model as an example where the $Z{\prime}$ luminosity, $L_{Z{\prime}}$, from the neutrinosphere is calculated. We calculate $Z'$ production, absorption, and decay rates through pair-coalescence, semi-Compton, loop-bremsstrahlung from proton-neutron scattering, and their inverse processes in a benchmark SN simulation with muons. We point out that, as the coupling constant $g_{Z'}$ increases, $L_{Z{\prime}}$ shall be approaching a constant plateau value for a given $m_{Z'}$ instead of monotonically decreasing down to zero as obtained in the previous literature. We demonstrate that this plateau phenomenon can be understood by physical arguments and justified by numerical calculations. With a different result on $L_{Z{\prime}}$ from the previous one, we discuss impacts on the constraints to $U(1){L\mu-L_\tau}$ parameter space by SN1987A. The implication of our result to the similar constraint on a generic BSM model with an extra neutral boson is also discussed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (35)
  1. Georg G. Raffelt, “Stars as Laboratories for Fundamental Physics”, (1996).
  2. Y. Zhang, “Supernova Cooling in a Dark Matter Smog”, JCAP 1411, no. 11, 042 (2014) doi:10.1088/1475-7516/2014/11/042 [arXiv:1404.7172 [hep-ph]].
  3. D. Kazanas, R. N. Mohapatra, S. Nussinov, V. L. Teplitz and Y. Zhang, “Supernova Bounds on the Dark Photon Using its Electromagnetic Decay”, Nucl. Phys. B 890, 17 (2014) doi:10.1016/j.nuclphysb.2014.11.009 [arXiv:1410.0221 [hep-ph]].
  4. Ermal Rrapaj and Sanjay Reddy, “Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints”, Phys. Rev. C 94, 045805 (2016).
  5. Edward Hardy and Robert Lasenby, “Stellar cooling bounds on new light particles: plasma mixing effects”, J. High Energy Phys. 02 (2017) 033.
  6. Cameron Mahoney, Adam K. Leibovich, and Andrew R. Zentner, “Updated Constraints on Self-Interacting Dark Matter from Supernova 1987A”, Phys. Rev. D96 043018 (2017).
  7. Jae Hyeok Chang, Rouven Essig, Samuel D. McDermott, “Revisiting Supernova 1987A Constraints on Dark Photons”, J. High Energy Phys. 01 (2017) 107.
  8. Djuna Croon, Gilly Elor, Rebecca K. Leane and Samuel D. McDermott, “Supernova Muons: New Constraints on Z′superscript𝑍normal-′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Bosons, Axions and ALPs”, J. High Energy Phys. 107 (2021).
  9. H. A. Bethe, “Supernova 1987A: An Empirical and analytic approach”, Astrophys. J. 412, 192-202 (1993) doi:10.1086/172911
  10. H. T. Janka, “Conditions for shock revival by neutrino heating in core collapse supernovae”, Astron. Astrophys. 368, 527 (2001) doi:10.1051/0004-6361:20010012 [arXiv:astro-ph/0008432 [astro-ph]].
  11. X. -G. He, G. C. Joshi, H. Lew, and R. R. Volkas, “New-Z′superscript𝑍normal-′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT phenomenology”, Phys. Rev. D 43, R22(R) (1991).
  12. Xiao-Gang He, G. C. Joshi, H. Lew, and R. R. Volkas, “Simplest Z′superscript𝑍normal-′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Model”, Phys. Rev. Lett. 44, 2118 (1991).
  13. E. Ma, D. P. Roy, and S. Roy, “Gauged Lμ−Lτsubscript𝐿𝜇subscript𝐿𝜏L_{\mu}-L_{\tau}italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT with large muon anomalous magnetic moment and the bimaximal mixing of neutrinos”, Phys. Lett. B 525, 101-106 (2002).
  14. S. Baek, N. G. Deshpande, X.-G. He, and P. Ko, “Muon anomalous g−2𝑔2g-2italic_g - 2 and gauged Lμ−Lτsubscript𝐿𝜇subscript𝐿𝜏L_{\mu}-L_{\tau}italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT models”, Phys. Rev. D 64, 055006 (2001).
  15. E. Salvioni, A. Strumia, G. Villadoro, and F. Zwirner, “Non-universal minimal Z′superscript𝑍normal-′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT models: present bounds and early LHC reach”, J. High Energy Phys. 03, 10 (2010).
  16. J. Heeck and W. Rodejohann, “Gauged Lμ−Lτsubscript𝐿𝜇subscript𝐿𝜏L_{\mu}-L_{\tau}italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT symmetry at the electroweak scale”, Phys. Rev. D 84, 075007 (2011).
  17. K. Harigaya, T. Igari, M. M. Nojiri, M. Takeuchi, and K. Tobe, “Muon g−2𝑔2g-2italic_g - 2 and LHC phenomenology in the Lμ−Lτsubscript𝐿𝜇subscript𝐿𝜏L_{\mu}-L_{\tau}italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT gauge symmetric model”, J. High Energy Phys. 03, 105 (2014).
  18. M. Bauer, P. Foldenauer, and J. Jaeckel, “Hunting All the Hidden Photons”, J. High Energy Phys. 07, 094 (2018).
  19. D. W. P. Amaral, D. G. Cerdeno, A. Cheek, and P. Foldenauer, “Confirming U⁢(1)Lμ−Lτ𝑈subscript1subscript𝐿𝜇subscript𝐿𝜏U(1)_{L_{\mu}-L_{\tau}}italic_U ( 1 ) start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_POSTSUBSCRIPT as a solution for (g−2)μsubscript𝑔2𝜇(g-2)_{\mu}( italic_g - 2 ) start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT with neutrinos”, Eur. Phys. J. C 81, 861 (2021).
  20. A. Greljo, Y. Soreq, P. Stangl, A. E. Thomsen, and J. Zupan, “Muonic force behind flavor anomalies”, J. High Energy Phys. 04, 151 (2022).
  21. P. Langacker, “The Physics of Heavy Z′superscript𝑍normal-′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT Gauge Bosons”, Rev. Mod. Phys. 81, 1199–1228 (2009).
  22. P. Langacker, “Light dark matter in a gauged U⁢(1)Lμ−Lτ𝑈subscript1subscript𝐿𝜇subscript𝐿𝜏U(1)_{L_{\mu}-L_{\tau}}italic_U ( 1 ) start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_POSTSUBSCRIPT model”, Phys. Rev. D 99, 035007 (2019).
  23. K. Asai, S. Okawa, and K. Tsumura, “Search for U⁢(1)Lμ−Lτ𝑈subscript1subscript𝐿𝜇subscript𝐿𝜏U(1)_{L_{\mu}-L_{\tau}}italic_U ( 1 ) start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_POSTSUBSCRIPT charged dark matter with neutrino telescope”, J. High Energy Phys. 03, 047 (2021).
  24. I. Holst, D. Hooper, and G. Krnjaic, “Simplest and Most Predictive Model of Muon g−2𝑔2g-2italic_g - 2 and Thermal Dark Matter”, Phys. Rev. Lett. 128, 141802 (2022).
  25. M. Drees and W. Zhao, “U⁢(1)Lμ−Lτ𝑈subscript1subscript𝐿𝜇subscript𝐿𝜏U(1)_{L_{\mu}-L_{\tau}}italic_U ( 1 ) start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_POSTSUBSCRIPT for light dark matter, gμ−2subscript𝑔𝜇2g_{\mu}-2italic_g start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - 2, the 511 keV excess and the Hubble tension”, Phys. Lett. B 827, 136948 (2022).
  26. T. Hapitas, D. Tuckler, and Y. Zhang, “General Kinetic Mixing in Gauged U⁢(1)Lμ−Lτ𝑈subscript1subscript𝐿𝜇subscript𝐿𝜏U(1)_{L_{\mu}-L_{\tau}}italic_U ( 1 ) start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_POSTSUBSCRIPT Model for Muon g−2𝑔2g-2italic_g - 2 and Dark Matter”, Phys. Rev. D 105, 016014 (2022).
  27. J. Heeck and A. Thapa, “Explaining lepton-flavor non-universality and self-interacting dark matter with Lμ−Lτsubscript𝐿𝜇subscript𝐿𝜏L_{\mu}-L_{\tau}italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT”, Eur. Phys. J. C 82, 485 (2022).
  28. Robert Bollig, William DeRocco, Peter W. Graham, and Hans-Thomas Janka, “Muons in Supernovae: Implications for the Axion-Muon Coupling”, Phys. Rev. Lett. 125, 051104 (2020).
  29. D.W.P. Amaral , D.G. Cerden~~𝑛\tilde{n}over~ start_ARG italic_n end_ARGo, P. Foldenauer and E. Reid, “Solar neutrino probes of the muon anomalous magnetic moment in the gauged U⁢(1)Lμ−Lτ𝑈subscript1subscript𝐿𝜇subscript𝐿𝜏U(1)_{L_{\mu}-L_{\tau}}italic_U ( 1 ) start_POSTSUBSCRIPT italic_L start_POSTSUBSCRIPT italic_μ end_POSTSUBSCRIPT - italic_L start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT end_POSTSUBSCRIPT”, J. High Energy Phys. 155 (2020).
  30. Wolfgang Altmannshofer, Stefania Gori, Maxim Pospelov, and Itay Yavin, “Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams”, Phys. Rev. Lett. 113, 091801 (2014).
  31. A. Sung, G. Guo and M. R. Wu, “Supernova Constraint on Self-Interacting Dark Sector Particles”, Phys. Rev. D 103, no.10, 103005 (2021).
  32. C. A. Manzari, J. Martin Camalich, J. Spinner and R. Ziegler, “Supernova limits on muonic dark forces”, Phys. Rev. D 108, no.10, 103020 (2023).
  33. F. E. Low, “Bremsstrahlung of Very Low-Energy Quanta in Elementary Particle Collisions” Phys. Rev. 110, 974 (1958).
  34. V.I. Zhaba, “Approximation of scattering phases for Reid93 potential”, IJARPS Vol. 5, Iss. 8 1-6 (2018).
  35. There is a caveat worth mentioning as αZ′subscript𝛼superscript𝑍′\alpha_{Z^{\prime}}italic_α start_POSTSUBSCRIPT italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT approaches or even surpasses α𝛼\alphaitalic_α. In such a case, the interaction rate for Z′⁢μ−→Z′⁢μ−→superscript𝑍′superscript𝜇superscript𝑍′superscript𝜇Z^{\prime}\mu^{-}\to Z^{\prime}\mu^{-}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT is comparable or even faster than that of Z′⁢μ−→γ⁢μ−→superscript𝑍′superscript𝜇𝛾superscript𝜇Z^{\prime}\mu^{-}\to\gamma\mu^{-}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT → italic_γ italic_μ start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT. Hence the former process should be considered for the propagation of Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT in addition to those reabsorption processes considered in Fig. 3. Consequently the Z′superscript𝑍′Z^{\prime}italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT trajectory inside the neutrinosphere is no longer a straight line. We shall not consider such a scenario in this work. Thus one should disregard constrained regions with gZ′>0.1subscript𝑔superscript𝑍′0.1g_{Z^{\prime}}>0.1italic_g start_POSTSUBSCRIPT italic_Z start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT end_POSTSUBSCRIPT > 0.1.
Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com