Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 103 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 92 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 241 tok/s Pro
2000 character limit reached

Infinite Series Solution of the Time-Dependent Radiative Transfer Equation in Anisotropically Scattering Media (2401.15698v2)

Published 28 Jan 2024 in hep-ph, math-ph, math.MP, and physics.optics

Abstract: We solve the radiative transfer equation (RTE) in anisotropically scattering media as an infinite series. Each series term represents a distinct number of scattering events, with analytical solutions derived for zero and single scattering. Higher-order corrections are addressed through numerical calculations or approximations. The RTE solution corresponds to Monte Carlo sampling of photon trajectories with fixed start and end points. Validated against traditional Monte Carlo simulations, featuring random end points, our solution demonstrates enhanced efficiency for both anisotropic and isotropic scattering functions, significantly reducing computational time and resources. The advantage of our method over Monte Carlo simulations varies with the position of interest and the asymmetry of light scattering, but it is typically orders of magnitude faster while achieving the same level of accuracy. The exploitation of hidden symmetries further accelerates our numerical calculations, enhancing the method's overall efficiency. In addition, we extend our analysis to the first and second moments of the photon's flux, elucidating the transition between transport and diffusive regimes.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.