The excitation of quadratic quasinormal modes for Kerr black holes (2401.15516v2)
Abstract: The excitation of quadratic quasinormal modes is an important nonlinear phenomenon for a Kerr black hole ringing at a specific linear mode. The amplitude of this second-order effect is proportional to the square of the linear mode amplitude, with the ratio being linked to the nature of the Kerr black hole. Focusing on the linear $(l=m=2,n=0)$ mode, we compute the dependency of the ratio on the dimensionless spin of the black hole, ranging up to 0.99, with the method applicable for more general mode couplings. Our calculation makes use of the frequency-domain, second-order Teukolsky equation, which involves two essential steps (a) analytically reconstructing the metric through the Chrzanowski-Cohen-Kegeles approach and (b) numerically solving the second-order Teukolsky equation using the shooting method along a complex contour. We find that the spin dependence of the ratio shows a strong correlation with the angular overlap between parent and child modes, providing qualitative insights into the origin of the dependence. Depending on the nature of the angular overlap, the ratio decreases with spin in scenarios such as the channel $(l=m=2,n=0)\times(l=m=2,n=0)\to(l=m=4)$ or increases in situations like $(l=m=2,n=0)\times(l=m=2,n=0)\to(l=5,m=4)$. For both cases, the ratios do not vanish in the extremal limit. As a byproduct, we find that the Weyl scalars can be concisely expressed with the Hertz potential.
- B. Carter, Phys. Rev. Lett. 26, 331 (1971).
- B. P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 116, 221101 (2016), [Erratum: Phys. Rev. Lett.121,no.12,129902(2018)], arXiv:1602.03841 [gr-qc] .
- E. Finch and C. J. Moore, Phys. Rev. D 106, 043005 (2022), arXiv:2205.07809 [gr-qc] .
- M. Campanelli and C. O. Lousto, Phys. Rev. D 59, 124022 (1999), arXiv:gr-qc/9811019 .
- K. Mitman et al., Phys. Rev. Lett. 130, 081402 (2023), arXiv:2208.07380 [gr-qc] .
- M. H.-Y. Cheung et al., Phys. Rev. Lett. 130, 081401 (2023), arXiv:2208.07374 [gr-qc] .
- H. Nakano and K. Ioka, Phys. Rev. D 76, 084007 (2007), arXiv:0708.0450 [gr-qc] .
- K. Ioka and H. Nakano, Phys. Rev. D 76, 061503 (2007), arXiv:0704.3467 [astro-ph] .
- M. Lagos and L. Hui, Phys. Rev. D 107, 044040 (2023), arXiv:2208.07379 [gr-qc] .
- H. Zhu et al., (2024), arXiv:2401.00805 [gr-qc] .
- P. L. Chrzanowski, Phys. Rev. D 11, 2042 (1975).
- J. Cohen and L. Kegeles, Physics Letters A 54, 5 (1975).
- L. S. Kegeles and J. M. Cohen, Phys. Rev. D 19, 1641 (1979).
- K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel. 2, 2 (1999), arXiv:gr-qc/9909058 .
- S. Chandrasekhar, The mathematical theory of black holes, Vol. 69 (Oxford university press, 1998).
- S. A. Teukolsky, Astrophysical Journal 185, 635 (1973).
- R. Penrose and W. Rindler, Spinors and space-time: Volume 1, Two-spinor calculus and relativistic fields, Vol. 1 (Cambridge University Press, 1984).
- S. A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972).
- E. W. Leaver, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 402, 285 (1985).
- R. M. Wald, Phys. Rev. Lett. 41, 203 (1978).
- B. F. Whiting and L. R. Price, Class. Quant. Grav. 22, S589 (2005).
- A. Ori, Phys. Rev. D 67, 124010 (2003), arXiv:gr-qc/0207045 .
- A. A. Starobinsky, Sov. Phys. JETP 37, 28 (1973).
- S. Teukolsky and W. Press, Astrophys. J. 193, 443 (1974).
- “Black Hole Perturbation Toolkit,” (bhptoolkit.org).
- S. L. Detweiler and E. Szedenits, Astrophys. J. 231, 211 (1979).
- E. W. Leaver, Phys. Rev. D 34, 384 (1986).
- H. Yang and J. Zhang, Phys. Rev. D 107, 064045 (2023), arXiv:2210.01724 [gr-qc] .
- A. Hussain and A. Zimmerman, Phys. Rev. D 106, 104018 (2022), arXiv:2206.10653 [gr-qc] .
- “The Spectral Einstein Code,” http://www.black-holes.org/SpEC.html.
- L. C. Stein, J. Open Source Softw. 4, 1683 (2019), arXiv:1908.10377 [gr-qc] .
- M. Isi and W. M. Farr, (2021), arXiv:2107.05609 [gr-qc] .
- S. Hod, Phys. Lett. B 666, 483 (2008a), arXiv:0810.5419 [gr-qc] .
- S. Hod, Phys. Rev. D 78, 084035 (2008b), arXiv:0811.3806 [gr-qc] .
- S. Aretakis, (2010), arXiv:1006.0283 [math.AP] .
- S. Aretakis, Commun. Math. Phys. 307, 17 (2011a), arXiv:1110.2007 [gr-qc] .
- S. Aretakis, Annales Henri Poincare 12, 1491 (2011b), arXiv:1110.2009 [gr-qc] .
- S. Aretakis, Adv. Theor. Math. Phys. 19, 507 (2015), arXiv:1206.6598 [gr-qc] .
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.