Shadow images of compact objects in beyond Horndeski theory (2401.15249v1)
Abstract: A beyond Horndeski theory is considered that admits wormholes, black holes and naked singularities. In this theory the shadow images of the black holes and the exotic compact objects (ECOs), illuminated by an optically and geometrically thin disk, are investigated. The results show that the three kinds of objects cast unlike shadow images, in particular, because the different objects possess a different number of light rings. The different boundaries of the accretion disk also affect the images. This may provide further insight into the nature of the shadow images of massive compact objects.
- C. M. Will, “The Confrontation between general relativity and experiment,” Living Rev. Rel. 9, 3 (2006)
- C. M. Will, “Theory and Experiment in Gravitational Physics”, (Cambridge University Press, 2018)
- L. Shao, N. Sennett, A. Buonanno, M. Kramer and N. Wex, “Constraining nonperturbative strong-field effects in scalar-tensor gravity by combining pulsar timing and laser-interferometer gravitational-wave detectors,” Phys. Rev. X 7, 041025 (2017)
- P. C. C. Freire, “Tests of gravity theories with pulsar timing,” [arXiv:2204.13468 [gr-qc]].
- M. S. Morris and K. S. Thorne, “Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity,” Am. J. Phys. 56, 395 (1988)
- M. S. Morris, K. S. Thorne and U. Yurtsever, “Wormholes, Time Machines, and the Weak Energy Condition,” Phys. Rev. Lett. 61, 1446 (1988)
- V. Cardoso, S. Hopper, C. F. B. Macedo, C. Palenzuela and P. Pani, “Gravitational-wave signatures of exotic compact objects and of quantum corrections at the horizon scale,” Phys. Rev. D 94, 084031 (2016)
- Z. Mark, A. Zimmerman, S. M. Du and Y. Chen, “A recipe for echoes from exotic compact objects,” Phys. Rev. D 96, 084002 (2017)
- M. Y. Ou, M. Y. Lai and H. Huang, “Echoes from asymmetric wormholes and black bounce,” Eur. Phys. J. C 82, 452 (2022)
- P. Cunha, V.P., C. Herdeiro, E. Radu and N. Sanchis-Gual, “Exotic Compact Objects and the Fate of the Light-Ring Instability,” Phys. Rev. Lett. 130, 061401 (2023)
- G. W. Horndeski, “Second-order scalar-tensor field equations in a four-dimensional space,” Int. J. Theor. Phys. 10, 363 (1974)
- C. Deffayet and D. A. Steer, “A formal introduction to Horndeski and Galileon theories and their generalizations,” Class. Quant. Grav. 30, 214006 (2013)
- P. Kanti, N. E. Mavromatos, J. Rizos, K. Tamvakis and E. Winstanley, “Dilatonic black holes in higher curvature string gravity,” Phys. Rev. D 54, 5049 (1996)
- H. Lu and Y. Pang, “Horndeski gravity as D→4→𝐷4D\rightarrow 4italic_D → 4 limit of Gauss-Bonnet,” Phys. Lett. B 809, 135717 (2020)
- D. D. Doneva, F. M. Ramazanoğlu, H. O. Silva, T. P. Sotiriou and S. S. Yazadjiev, “Scalarization,” [arXiv:2211.01766 [gr-qc]].
- P. Kanti, B. Kleihaus and J. Kunz, “Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory,” Phys. Rev. Lett. 107, 271101 (2011)
- G. Antoniou, A. Bakopoulos, P. Kanti, B. Kleihaus and J. Kunz, “Novel Einstein–scalar-Gauss-Bonnet wormholes without exotic matter,” Phys. Rev. D 101, 024033 (2020)
- B. Kleihaus, J. Kunz and P. Kanti, “Particle-like ultracompact objects in Einstein-scalar-Gauss-Bonnet theories,” Phys. Lett. B 804, 135401 (2020)
- D. Glavan and C. Lin, “Einstein-Gauss-Bonnet Gravity in Four-Dimensional Spacetime,” Phys. Rev. Lett. 124, 081301 (2020)
- R. A. Hennigar, D. Kubizňák, R. B. Mann and C. Pollack, “On taking the D → 4 limit of Gauss-Bonnet gravity: theory and solutions,” JHEP 07, 027 (2020)
- P. G. S. Fernandes, P. Carrilho, T. Clifton and D. J. Mulryne, “Derivation of Regularized Field Equations for the Einstein-Gauss-Bonnet Theory in Four Dimensions,” Phys. Rev. D 102, 024025 (2020)
- J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, “Healthy theories beyond Horndeski,” Phys. Rev. Lett. 114, 211101 (2015)
- D. Langlois and K. Noui, “Degenerate higher derivative theories beyond Horndeski: evading the Ostrogradski instability,” JCAP 02, 034 (2016)
- J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, “Exploring gravitational theories beyond Horndeski,” JCAP 02, 018 (2015)
- M. Crisostomi, K. Koyama and G. Tasinato, “Extended Scalar-Tensor Theories of Gravity,” JCAP 04, 044 (2016)
- M. Crisostomi, M. Hull, K. Koyama and G. Tasinato, “Horndeski: beyond, or not beyond?,” JCAP 03, 038 (2016)
- C. Bambi, “A code to compute the emission of thin accretion disks in non-Kerr space-times and test the nature of black hole candidates,” Astrophys. J. 761, 174 (2012)
- T. Johannsen, “Photon Rings around Kerr and Kerr-like Black Holes,” Astrophys. J. 777, 170 (2013)
- P. V. P. Cunha, C. A. R. Herdeiro, E. Radu and H. F. Runarsson, “Shadows of Kerr black holes with scalar hair,” Phys. Rev. Lett. 115, 211102 (2015)
- P. V. P. Cunha, C. A. R. Herdeiro, E. Radu and H. F. Runarsson, “Shadows of Kerr black holes with and without scalar hair,” Int. J. Mod. Phys. D 25, 1641021 (2016)
- S. E. Gralla, D. E. Holz and R. M. Wald, “Black Hole Shadows, Photon Rings, and Lensing Rings,” Phys. Rev. D 100, 024018 (2019)
- Z. Younsi, D. Psaltis and F. Özel, “Black Hole Images as Tests of General Relativity: Effects of Spacetime Geometry,” Astrophys. J. 942, 47 (2023)
- C. Promsiri, W. Horinouchi and E. Hirunsirisawat, “Remarks on the light ring images and the optical appearance of hairy black holes in Einstein-Maxwell-dilaton gravity,” [arXiv:2310.04221 [gr-qc]].
- R. Kumar and S. G. Ghosh, “Rotating black holes in 4D4𝐷4D4 italic_D Einstein-Gauss-Bonnet gravity and its shadow,” JCAP 07, 053 (2020)
- M. Guo and P. C. Li, “Innermost stable circular orbit and shadow of the 4D4𝐷4D4 italic_D Einstein–Gauss–Bonnet black hole,” Eur. Phys. J. C 80, 588 (2020)
- R. A. Konoplya and A. F. Zinhailo, “Quasinormal modes, stability and shadows of a black hole in the 4D Einstein–Gauss–Bonnet gravity,” Eur. Phys. J. C 80, 1049 (2020)
- X. X. Zeng, H. Q. Zhang and H. Zhang, “Shadows and photon spheres with spherical accretions in the four-dimensional Gauss–Bonnet black hole,” Eur. Phys. J. C 80, 872 (2020)
- J. Peng, M. Guo and X. H. Feng, “Influence of quantum correction on black hole shadows, photon rings, and lensing rings,” Chin. Phys. C 45, 085103 (2021)
- G. Gyulchev, P. Nedkova, T. Vetsov and S. Yazadjiev, “Image of the thin accretion disk around compact objects in the Einstein–Gauss–Bonnet gravity,” Eur. Phys. J. C 81, 885 (2021)
- X. X. Zeng, M. I. Aslam and R. Saleem, “The optical appearance of charged four-dimensional Gauss–Bonnet black hole with strings cloud and non-commutative geometry surrounded by various accretions profiles,” Eur. Phys. J. C 83, 129 (2023)
- J. P. Ye, Z. Q. He, A. X. Zhou, Z. Y. Huang and J. H. Huang, “Shadows and photon rings of a quantum black hole,” [arXiv:2312.17724 [gr-qc]].
- C. Bambi, “Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities,” Phys. Rev. D 87, 107501 (2013)
- N. Tsukamoto, “Linearization stability of reflection-asymmetric thin-shell wormholes with double shadows,” Phys. Rev. D 103, 064031 (2021)
- M. Guerrero, G. J. Olmo and D. Rubiera-Garcia, “Double shadows of reflection-asymmetric wormholes supported by positive energy thin-shells,” JCAP 04, 066 (2021)
- J. Peng, M. Guo and X. H. Feng, “Observational signature and additional photon rings of an asymmetric thin-shell wormhole,” Phys. Rev. D 104, 124010 (2021)
- C. Bambi and D. Stojkovic, “Astrophysical Wormholes,” Universe 7, 136 (2021)
- F. Rahaman, K. N. Singh, R. Shaikh, T. Manna and S. Aktar, “Shadows of Lorentzian traversable wormholes,” Class. Quant. Grav. 38, 215007 (2021)
- J. Schee and Z. Stuchlík, “Appearance of Keplerian discs orbiting on both sides of reflection-symmetric wormholes,” JCAP 01, 054 (2022)
- M. Guerrero, G. J. Olmo, D. Rubiera-Garcia and D. Gómez Sáez-Chillón, “Light ring images of double photon spheres in black hole and wormhole spacetimes,” Phys. Rev. D 105, 084057 (2022)
- V. Delijski, G. Gyulchev, P. Nedkova and S. Yazadjiev, “Polarized image of equatorial emission in horizonless spacetimes: Traversable wormholes,” Phys. Rev. D 106, 104024 (2022)
- H. Huang, J. Kunz, J. Yang and C. Zhang, “Light ring behind wormhole throat: Geodesics, images, and shadows,” Phys. Rev. D 107, 104060 (2023)
- V. A. Ishkaeva and S. V. Sushkov, “Image of an accreting general Ellis-Bronnikov wormhole,” Phys. Rev. D 108, 084054 (2023)
- R. Shaikh, P. Kocherlakota, R. Narayan and P. S. Joshi, “Shadows of spherically symmetric black holes and naked singularities,” Mon. Not. Roy. Astron. Soc. 482, 52 (2019)
- G. Gyulchev, P. Nedkova, T. Vetsov and S. Yazadjiev, “Image of the Janis-Newman-Winicour naked singularity with a thin accretion disk,” Phys. Rev. D 100, 024055 (2019)
- G. Gyulchev, J. Kunz, P. Nedkova, T. Vetsov and S. Yazadjiev, “Observational signatures of strongly naked singularities: image of the thin accretion disk,” Eur. Phys. J. C 80, 1017 (2020)
- A. B. Joshi, D. Dey, P. S. Joshi and P. Bambhaniya, “Shadow of a Naked Singularity without Photon Sphere,” Phys. Rev. D 102, 024022 (2020)
- D. Dey, R. Shaikh and P. S. Joshi, “Shadow of nulllike and timelike naked singularities without photon spheres,” Phys. Rev. D 103, 024015 (2021)
- A. Tavlayan and B. Tekin, “Instability of a Kerr-type naked singularity due to light and matter accretion and its shadow,” [arXiv:2301.13751 [gr-qc]].
- V. Deliyski, G. Gyulchev, P. Nedkova and S. Yazadjiev, “Polarized image of equatorial emission in horizonless spacetimes: Naked singularities,” Phys. Rev. D 108, no.10, 104049 (2023) doi:10.1103/PhysRevD.108.104049 [arXiv:2303.14756 [gr-qc]].
- J. L. Rosa and D. Rubiera-Garcia, “Shadows of boson and Proca stars with thin accretion disks,” Phys. Rev. D 106, 084004 (2022)
- J. L. Rosa, P. Garcia, F. H. Vincent and V. Cardoso, “Observational signatures of hot spots orbiting horizonless objects,” Phys. Rev. D 106, 044031 (2022)
- A. Bakopoulos, C. Charmousis and P. Kanti, “Traversable wormholes in beyond Horndeski theories,” JCAP 05, 022 (2022)
- J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui and G. Tasinato, “Degenerate higher order scalar-tensor theories beyond Horndeski up to cubic order,” JHEP 12, 100 (2016)
- T. Kobayashi, M. Yamaguchi and J. Yokoyama, “Generalized G-inflation: Inflation with the most general second-order field equations,” Prog. Theor. Phys. 126, 511 (2011)
- P. Grandclement, C. Somé and E. Gourgoulhon, “Models of rotating boson stars and geodesics around them: new type of orbits,” Phys. Rev. D 90, 024068 (2014)
- M. C. Teodoro, L. G. Collodel and J. Kunz, “Retrograde Polish Doughnuts around Boson Stars,” JCAP 03, 063 (2021)
- X. J. Gao, T. T. Sui, X. X. Zeng, Y. S. An and Y. P. Hu, “Investigating shadow images and rings of the charged Horndeski black hole illuminated by various thin accretions,” Eur. Phys. J. C 83, 1052 (2023)
- S. W. Wei, Y. P. Zhang, Y. X. Liu and R. B. Mann, “Static spheres around spherically symmetric black hole spacetime,” Phys. Rev. Res. 5, 043050 (2023)
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.