Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Physically Informed Synchronic-adaptive Learning for Industrial Systems Modeling in Heterogeneous Media with Unavailable Time-varying Interface (2401.14609v1)

Published 26 Jan 2024 in cs.LG and cs.CE

Abstract: Partial differential equations (PDEs) are commonly employed to model complex industrial systems characterized by multivariable dependence. Existing physics-informed neural networks (PINNs) excel in solving PDEs in a homogeneous medium. However, their feasibility is diminished when PDE parameters are unknown due to a lack of physical attributions and time-varying interface is unavailable arising from heterogeneous media. To this end, we propose a data-physics-hybrid method, physically informed synchronic-adaptive learning (PISAL), to solve PDEs for industrial systems modeling in heterogeneous media. First, Net1, Net2, and NetI, are constructed to approximate the solutions satisfying PDEs and the interface. Net1 and Net2 are utilized to synchronously learn each solution satisfying PDEs with diverse parameters, while NetI is employed to adaptively learn the unavailable time-varying interface. Then, a criterion combined with NetI is introduced to adaptively distinguish the attributions of measurements and collocation points. Furthermore, NetI is integrated into a data-physics-hybrid loss function. Accordingly, a synchronic-adaptive learning (SAL) strategy is proposed to decompose and optimize each subdomain. Besides, we theoretically prove the approximation capability of PISAL. Extensive experimental results verify that the proposed PISAL can be used for industrial systems modeling in heterogeneous media, which faces the challenges of lack of physical attributions and unavailable time-varying interface.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. N. Ji and J. Liu, “Quantized time-varying fault-tolerant control for a three-dimensional euler–bernoulli beam with unknown control directions,” IEEE Transactions on Automation Science and Engineering, pp. 1–12, 2023.
  2. S. Zhang, Y. Wu, X. He, and Z. Liu, “Cooperative fault-tolerant control for a mobile dual flexible manipulator with output constraints,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 2689–2698, 2022.
  3. H. Yu, J. Gong, G. Wang, and X. Chen, “A hybrid model for billet tapping temperature prediction and optimization in reheating furnace,” IEEE Transactions on Industrial Informatics, 2022.
  4. Y. Feng, Y. Wang, Y. Mo, Y. Jiang, Z. Liu, W. He, and H.-X. Li, “Computation-efficient fault detection framework for partially known nonlinear distributed parameter systems,” IEEE Transactions on Neural Networks and Learning Systems, 2023.
  5. N. Ji and J. Liu, “Vibration control for a three-dimensional variable length flexible string with time-varying actuator faults and unknown control directions,” IEEE Transactions on Automation Science and Engineering, 2022.
  6. K. Huang, S. Tao, D. Wu, C. Yang, and W. Gui, “Physical informed sparse learning for robust modeling of distributed parameter system and its industrial applications,” IEEE Transactions on Automation Science and Engineering, 2023.
  7. W. Huang and Z. Kong, “Process capability sensitivity analysis for design evaluation of multistage assembly processes,” IEEE Transactions on Automation Science and Engineering, vol. 7, no. 4, pp. 736–745, 2010.
  8. B. Petrus, Z. Chen, H. El-Kebir, J. Bentsman, and B. G. Thomas, “Solid boundary output feedback control of the stefan problem: The enthalpy approach,” IEEE Transactions on Automatic Control, vol. 68, no. 6, pp. 3485–3500, 2023.
  9. Z. Li and D. Shen, “Filter-free parameter estimation method for continuous-time systems,” IEEE Transactions on Automation Science and Engineering, pp. 1–16, 2023.
  10. L. Qiu and H. Ren, “Rsegnet: A joint learning framework for deformable registration and segmentation,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 3, pp. 2499–2513, 2022.
  11. J. Xie and B. Yao, “Physics-constrained deep learning for robust inverse ecg modeling,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 1, pp. 151–166, 2023.
  12. D. Wang, K. Liu, and X. Zhang, “Spatiotemporal thermal field modeling using partial differential equations with time-varying parameters,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 2, pp. 646–657, 2019.
  13. Y.-M. H. Ng, M. Yu, Y. Huang, and R. Du, “Diagnosis of sheet metal stamping processes based on 3-d thermal energy distribution,” IEEE Transactions on Automation Science and Engineering, vol. 4, no. 1, pp. 22–30, 2007.
  14. H. Yu and Z. Hua, “Dynamic sampling policy for in situ and online measurements data fusion in a policy network,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 3, pp. 2016–2029, 2022.
  15. Q. Sun and Z. Ge, “A survey on deep learning for data-driven soft sensors,” IEEE Transactions on Industrial Informatics, vol. 17, no. 9, pp. 5853–5866, 2021.
  16. N. Yassaie, S. Gargoum, and A. W. Al-Dabbagh, “Data-driven fault classification in large-scale industrial processes using reduced number of process variables,” IEEE Transactions on Automation Science and Engineering, pp. 1–0, 2023.
  17. J. Sirignano and K. Spiliopoulos, “Dgm: A deep learning algorithm for solving partial differential equations,” Journal of computational physics, vol. 375, pp. 1339–1364, 2018.
  18. L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, “Deepxde: A deep learning library for solving differential equations,” SIAM review, vol. 63, no. 1, pp. 208–228, 2021.
  19. Z. Yao and C. Zhao, “Figan: A missing industrial data imputation method customized for soft sensor application,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 3712–3722, 2021.
  20. C. F. Lui, Y. Liu, and M. Xie, “A supervised bidirectional long short-term memory network for data-driven dynamic soft sensor modeling,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–13, 2022.
  21. Z. Hu, C. Wang, J. Wu, and D. Du, “Gaussian process latent variable model-based multi-output modeling of incomplete data,” IEEE Transactions on Automation Science and Engineering, pp. 1–11, 2023.
  22. M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” Journal of Computational physics, vol. 378, pp. 686–707, 2019.
  23. J. Zhao, W. Li, X. Yuan, X. Yin, X. Li, Q. Chen, and J. Ding, “An end-to-end physics-informed neural network for defect identification and 3-d reconstruction using rotating alternating current field measurement,” IEEE Transactions on Industrial Informatics, vol. 19, no. 7, pp. 8340–8350, 2023.
  24. G. Huang, Z. Zhou, F. Wu, and W. Hua, “Physics-informed time-aware neural networks for industrial nonintrusive load monitoring,” IEEE Transactions on Industrial Informatics, 2022.
  25. A. D. Jagtap, Z. Mao, N. Adams, and G. E. Karniadakis, “Physics-informed neural networks for inverse problems in supersonic flows,” Journal of Computational Physics, vol. 466, p. 111402, 2022.
  26. B. Zhang, G. Wu, Y. Gu, X. Wang, and F. Wang, “Multi-domain physics-informed neural network for solving forward and inverse problems of steady-state heat conduction in multilayer media,” Physics of Fluids, vol. 34, no. 11, 2022.
  27. A. Alhubail, X. He, M. AlSinan, H. Kwak, and H. Hoteit, “Extended physics-informed neural networks for solving fluid flow problems in highly heterogeneous media,” in International Petroleum Technology Conference.   IPTC, 2022, p. D031S073R001.
  28. M. Aliakbari, M. Soltany Sadrabadi, P. Vadasz, and A. Arzani, “Ensemble physics informed neural networks: A framework to improve inverse transport modeling in heterogeneous domains,” Physics of Fluids, vol. 35, no. 5, 2023.
  29. V. Chernyshov, A. Kaz’min, and P. Fedyunin, “Testing electrophysical parameters of multilayer dielectric and magnetodielectric coatings by the method of surface electromagnetic waves,” in 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), 2021, pp. 372–377.
  30. S. Cai, Z. Wang, S. Wang, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks for heat transfer problems,” Journal of Heat Transfer, vol. 143, no. 6, p. 060801, 2021.
  31. W. Li and Y. Xu, “Schwarz domain decomposition methods for the fluid-fluid system with friction-type interface conditions,” Applied Numerical Mathematics, vol. 166, pp. 114–126, 2021.
  32. A. Wang, P. Qin, and X.-M. Sun, “Coupled physics-informed neural networks for inferring solutions of partial differential equations with unknown source terms,” arXiv preprint arXiv:2301.08618, 2023.
  33. S. Mishra and R. Molinaro, “Estimates on the generalization error of physics informed neural networks (pinns) for approximating a class of inverse problems for pdes,” arXiv preprint arXiv:2007.01138, 2020.
  34. A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differentiation in machine learning: a survey,” Journal of Marchine Learning Research, vol. 18, pp. 1–43, 2018.
  35. H. Gomez, M. Bures, and A. Moure, “A review on computational modelling of phase-transition problems,” Philosophical Transactions of the Royal Society A, vol. 377, no. 2143, p. 20180203, 2019.
  36. I. C. Kim and Y.-H. Kim, “The stefan problem and free targets of optimal brownian martingale transport,” arXiv preprint arXiv:2110.03831, 2021.
  37. S. Nandi and Y. Sanyasiraju, “A second order accurate fixed-grid method for multi-dimensional stefan problem with moving phase change materials,” Applied Mathematics and Computation, vol. 416, p. 126719, 2022.
  38. S. Wang and P. Perdikaris, “Deep learning of free boundary and stefan problems,” Journal of Computational Physics, vol. 428, p. 109914, 2021.
  39. Z. Geng, Z. Chen, Q. Meng, and Y. Han, “Novel transformer based on gated convolutional neural network for dynamic soft sensor modeling of industrial processes,” IEEE Transactions on Industrial Informatics, vol. 18, no. 3, pp. 1521–1529, 2021.
  40. J. Zhang, D. Zhou, M. Chen, and X. Hong, “Continual learning for multimode dynamic process monitoring with applications to an ultra–supercritical thermal power plant,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 1, pp. 137–150, 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets